{"title":"Design and Motion Analysis of a Soft Modular Robot for Diverse Environments.","authors":"Yu Zhang,Yu Li,Dongbao Sui,Lingkai Luan,Tianjiao Zheng,Zongwei Zhang,Sikai Zhao,Fuyue Zhang,Dongjie Li,Yanhe Zhu","doi":"10.1089/soro.2025.0002","DOIUrl":null,"url":null,"abstract":"This article introduces the design and development of a modular soft robot capable of performing multiple movement modes. The core unit module features a four-chamber soft structure, separated by a cross-shaped thin plate. By selectively applying pneumatic pressure to different chambers and changing connector configurations, the robot achieves diverse modular configurations and movement modes, enabling it to adapt to various environments. To address the challenges posed by the material's nonlinear behavior and its infinite degrees of freedom, a three-dimensional spatial mathematical modeling approach is proposed. This method, grounded in classical plate theory and the chained composite model, establishes a static model for the soft robot's spatial bending motion with constant curvature. In addition, a single-controller framework based on a central pattern generator is developed to facilitate the generation of multiple movement gaits. By tuning parameters such as oscillator phase, frequency, load factor, and amplitude, the controller can generate a wide range of movement patterns. To validate the proposed theoretical and experimental models, we developed a pneumatic control platform that demonstrated the robot's multimodal locomotion capabilities through systematic testing in terrains with varying complexity.","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"124 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2025.0002","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article introduces the design and development of a modular soft robot capable of performing multiple movement modes. The core unit module features a four-chamber soft structure, separated by a cross-shaped thin plate. By selectively applying pneumatic pressure to different chambers and changing connector configurations, the robot achieves diverse modular configurations and movement modes, enabling it to adapt to various environments. To address the challenges posed by the material's nonlinear behavior and its infinite degrees of freedom, a three-dimensional spatial mathematical modeling approach is proposed. This method, grounded in classical plate theory and the chained composite model, establishes a static model for the soft robot's spatial bending motion with constant curvature. In addition, a single-controller framework based on a central pattern generator is developed to facilitate the generation of multiple movement gaits. By tuning parameters such as oscillator phase, frequency, load factor, and amplitude, the controller can generate a wide range of movement patterns. To validate the proposed theoretical and experimental models, we developed a pneumatic control platform that demonstrated the robot's multimodal locomotion capabilities through systematic testing in terrains with varying complexity.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.