{"title":"Engineered Spatial Confinement of Cu Single-atoms with Diagonal N-Cu-N Motifs for High-rate CO2 Methanation.","authors":"Guanghui Feng,Dashuai Wang,Libin Zeng,Wanzhen Zheng,Weixiao Lin,Xianyun Peng,Xiahan Sang,Bin Yang,Zhongjian Li,Yuanyuan Li,Lecheng Lei,Yang Hou","doi":"10.1002/anie.202508497","DOIUrl":null,"url":null,"abstract":"The renewable-electricity-powered carbon dioxide reduction (eCO2R) to value-added fuels and feedstocks like methane (CH4) holds the sustainable and economically viable carbon cycle at meaningful scales. However, this kinetically challenging eight-electron multistep deep-reduction encounters insufficient catalyst design principles to steer complex CO2 reduction pathways. Utilizing atomic copper (Cu) structures with unitary active site can boost eCO2R-to-CH4 selectivity due to the efficient suppression of unwanted C-C coupling. Herein, we report a sequential ion exchange strategy to fabricate periodic Cu single-atom catalysts within a polymeric carbon nitride (PCN) matrix, where the uniformly dispersed, diagonally coordinated N-Cu-N configuration hosts low-valent Cuδ+ centers. Leveraging the periodic N-anchoring sites with delocalized π-electron conjugation in PCN matrix, the isolated Cu sites are obtained with an interatomic distance of ~4.2 Å under high metal-loading conditions. This engineered spatial configuration effectively inhibits C-C coupling to avoid subsequent multicarbon products formation. The optimized Cu1/PCN demonstrates exceptional eCO2R-to-CH4 performance, achieving 71.1% CH4 Faradaic efficiency with a high partial current density of 426.6 mA cm-2 at -1.50 V vs. reversible hydrogen electrode, outpacing the state-of-the-art catalysts. This work delves into effective concepts for steering desirable reaction pathways via precisely modulating active site structures at the atomic level to create favorable microenvironments.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"54 1","pages":"e202508497"},"PeriodicalIF":16.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202508497","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The renewable-electricity-powered carbon dioxide reduction (eCO2R) to value-added fuels and feedstocks like methane (CH4) holds the sustainable and economically viable carbon cycle at meaningful scales. However, this kinetically challenging eight-electron multistep deep-reduction encounters insufficient catalyst design principles to steer complex CO2 reduction pathways. Utilizing atomic copper (Cu) structures with unitary active site can boost eCO2R-to-CH4 selectivity due to the efficient suppression of unwanted C-C coupling. Herein, we report a sequential ion exchange strategy to fabricate periodic Cu single-atom catalysts within a polymeric carbon nitride (PCN) matrix, where the uniformly dispersed, diagonally coordinated N-Cu-N configuration hosts low-valent Cuδ+ centers. Leveraging the periodic N-anchoring sites with delocalized π-electron conjugation in PCN matrix, the isolated Cu sites are obtained with an interatomic distance of ~4.2 Å under high metal-loading conditions. This engineered spatial configuration effectively inhibits C-C coupling to avoid subsequent multicarbon products formation. The optimized Cu1/PCN demonstrates exceptional eCO2R-to-CH4 performance, achieving 71.1% CH4 Faradaic efficiency with a high partial current density of 426.6 mA cm-2 at -1.50 V vs. reversible hydrogen electrode, outpacing the state-of-the-art catalysts. This work delves into effective concepts for steering desirable reaction pathways via precisely modulating active site structures at the atomic level to create favorable microenvironments.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.