{"title":"Engineering Oxidase-Based Cascade Nanoreactors Design, Catalytic Efficiency, and Applications in Disease Monitoring.","authors":"Zongda Li,Mingping Shen,Fanxing Meng,Youning Zhang,Weiwei Duan,Chengyi Hou,Minwei Zhang","doi":"10.1002/smll.202501976","DOIUrl":null,"url":null,"abstract":"Inspired by the advantages of biological cascade catalytic systems, it has been devoted to the discovery of novel oxidase-based cascade catalytic systems for disease monitoring. However, the low stability, easy inactivation, and poor reproducibility of oxidase significantly limit their practical applications. Immobilization of the oxidase can be enabled to protect them from external mediators and improve catalytic efficiency and reproducibility. Notably, the substrate channels and spatial confinement play an essential role in the construction of immobilized cascade nanoreactors to enhance the overall activity. Moreover, nanozymes, a class of enzyme mimics, have not only enzyme-like activity but also high stability and tunable catalytic properties, which bolster the development of cascade nanoreactors. Herein, recent advances in the assembly of cascade reactors involving enzymes/nanozymes are described. The importance of substrate channeling and spatial distribution in regulating the catalytic efficiency of the nanoreactor is highlighted. Then, along with an in-depth discussion of the cascade biosensors for disease monitoring, the design and application of innovative devices based on these sensing principles are also summarized, including microfluidic systems, hydrogel-based platforms, and test paper technologies. Finally, challenges and prospects for cascade nanoreactors are briefly discussed and prospected.","PeriodicalId":228,"journal":{"name":"Small","volume":"13 1","pages":"e2501976"},"PeriodicalIF":13.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501976","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by the advantages of biological cascade catalytic systems, it has been devoted to the discovery of novel oxidase-based cascade catalytic systems for disease monitoring. However, the low stability, easy inactivation, and poor reproducibility of oxidase significantly limit their practical applications. Immobilization of the oxidase can be enabled to protect them from external mediators and improve catalytic efficiency and reproducibility. Notably, the substrate channels and spatial confinement play an essential role in the construction of immobilized cascade nanoreactors to enhance the overall activity. Moreover, nanozymes, a class of enzyme mimics, have not only enzyme-like activity but also high stability and tunable catalytic properties, which bolster the development of cascade nanoreactors. Herein, recent advances in the assembly of cascade reactors involving enzymes/nanozymes are described. The importance of substrate channeling and spatial distribution in regulating the catalytic efficiency of the nanoreactor is highlighted. Then, along with an in-depth discussion of the cascade biosensors for disease monitoring, the design and application of innovative devices based on these sensing principles are also summarized, including microfluidic systems, hydrogel-based platforms, and test paper technologies. Finally, challenges and prospects for cascade nanoreactors are briefly discussed and prospected.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.