Hyun Woong Kwon, Ralph Rolly Gonzales, Pengfei Zhang, Bowen Li, Kwang Seop Im, Jun Ho Park, Tae Kyung Lee, Hideto Matsuyama, Sang Yong Nam
{"title":"Effective oil-in-water emulsion separation by self-cleaning superoleophobic hydrogel membrane composite with hierarchical structure","authors":"Hyun Woong Kwon, Ralph Rolly Gonzales, Pengfei Zhang, Bowen Li, Kwang Seop Im, Jun Ho Park, Tae Kyung Lee, Hideto Matsuyama, Sang Yong Nam","doi":"10.1038/s41545-025-00468-0","DOIUrl":null,"url":null,"abstract":"<p>Hollow fiber membranes were fabricated using polyvinylidene fluoride (PVDF) via the thermally induced phase separation method for oil-water separation. By introducing glycerol triacetate (GTA) or propylene carbonate as an extruded solvent, membrane porosity and pore size were controlled, significantly enhancing water permeance. The highest porosity and permeance were achieved with GTA as the co-extruded solvent. To further improve separation performance, a polyvinyl alcohol (PVA) coating was applied, forming a superhydrophilic and superoleophobic membrane composite. The coated membranes exhibited complete water absorption (0° contact angle) while repelling oil, preventing droplet adhesion. Antifouling performance was significantly improved, with flux recovery ratios exceeding 90% compared to 2–26% for uncoated membranes. The best-performing membrane achieved a high oil-in-water emulsion permeance of 3551 LMH/bar and 99.2% soybean oil removal efficiency. These findings demonstrate the potential of superhydrophilic and superoleophobic membranes with controlled porosity for efficient oil-water separation.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"17 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00468-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hollow fiber membranes were fabricated using polyvinylidene fluoride (PVDF) via the thermally induced phase separation method for oil-water separation. By introducing glycerol triacetate (GTA) or propylene carbonate as an extruded solvent, membrane porosity and pore size were controlled, significantly enhancing water permeance. The highest porosity and permeance were achieved with GTA as the co-extruded solvent. To further improve separation performance, a polyvinyl alcohol (PVA) coating was applied, forming a superhydrophilic and superoleophobic membrane composite. The coated membranes exhibited complete water absorption (0° contact angle) while repelling oil, preventing droplet adhesion. Antifouling performance was significantly improved, with flux recovery ratios exceeding 90% compared to 2–26% for uncoated membranes. The best-performing membrane achieved a high oil-in-water emulsion permeance of 3551 LMH/bar and 99.2% soybean oil removal efficiency. These findings demonstrate the potential of superhydrophilic and superoleophobic membranes with controlled porosity for efficient oil-water separation.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.