Estimating canopy leaf angle from leaf to ecosystem scale: a novel deep learning approach using unmanned aerial vehicle imagery

IF 8.3 1区 生物学 Q1 PLANT SCIENCES
New Phytologist Pub Date : 2025-05-10 DOI:10.1111/nph.70197
Zhe Wang, Zaichun Zhu, Sen Cao, Josep Peñuelas, Da Zeng, Dajing Li, Weiqing Zhao, Yaoyao Zheng, Jiana Chen, Pengjun Zhao
{"title":"Estimating canopy leaf angle from leaf to ecosystem scale: a novel deep learning approach using unmanned aerial vehicle imagery","authors":"Zhe Wang, Zaichun Zhu, Sen Cao, Josep Peñuelas, Da Zeng, Dajing Li, Weiqing Zhao, Yaoyao Zheng, Jiana Chen, Pengjun Zhao","doi":"10.1111/nph.70197","DOIUrl":null,"url":null,"abstract":"Summary<jats:list list-type=\"bullet\"> <jats:list-item>Leaf angle distribution (LAD) impacts plant photosynthesis, water use efficiency, and ecosystem primary productivity, which are crucial for understanding surface energy balance and climate change responses. Traditional LAD measurement methods are time‐consuming and often limited to individual sites, hindering effective data acquisition at the ecosystem scale and complicating the modeling of canopy LAD variations.</jats:list-item> <jats:list-item>We present a deep learning approach that is more affordable, efficient, automated, and less labor‐intensive than traditional methods for estimating LAD. The method uses unmanned aerial vehicle images processed with structure‐from‐motion point cloud algorithms and the Mask Region‐based convolutional neural network.</jats:list-item> <jats:list-item>Validation at the single‐leaf scale using manual measurements across three plant species confirmed high accuracy of the proposed method (<jats:italic>Pachira glabra</jats:italic>: <jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.87, RMSE = 7.61°; <jats:italic>Ficus elastica</jats:italic>: <jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.91, RMSE = 6.72°; <jats:italic>Schefflera macrostachya</jats:italic>: <jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.85, RMSE = 5.67°). Employing this method, we efficiently measured leaf angles for 57 032 leaves within a 30 m × 30 m plot, revealing distinct LAD among four representative tree species: <jats:italic>Melodinus suaveolens</jats:italic> (mean inclination angle 34.79°), <jats:italic>Daphniphyllum calycinum</jats:italic> (31.22°), <jats:italic>Endospermum chinense</jats:italic> (25.40°), and <jats:italic>Tetracera sarmentosa</jats:italic> (30.37°).</jats:list-item> <jats:list-item>The method can efficiently estimate LAD across scales, providing critical structural information of vegetation canopy for ecosystem modeling, including species‐specific leaf strategies and their effects on light interception and photosynthesis in diverse forests.</jats:list-item> </jats:list>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"55 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70197","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Summary Leaf angle distribution (LAD) impacts plant photosynthesis, water use efficiency, and ecosystem primary productivity, which are crucial for understanding surface energy balance and climate change responses. Traditional LAD measurement methods are time‐consuming and often limited to individual sites, hindering effective data acquisition at the ecosystem scale and complicating the modeling of canopy LAD variations. We present a deep learning approach that is more affordable, efficient, automated, and less labor‐intensive than traditional methods for estimating LAD. The method uses unmanned aerial vehicle images processed with structure‐from‐motion point cloud algorithms and the Mask Region‐based convolutional neural network. Validation at the single‐leaf scale using manual measurements across three plant species confirmed high accuracy of the proposed method (Pachira glabra: R2 = 0.87, RMSE = 7.61°; Ficus elastica: R2 = 0.91, RMSE = 6.72°; Schefflera macrostachya: R2 = 0.85, RMSE = 5.67°). Employing this method, we efficiently measured leaf angles for 57 032 leaves within a 30 m × 30 m plot, revealing distinct LAD among four representative tree species: Melodinus suaveolens (mean inclination angle 34.79°), Daphniphyllum calycinum (31.22°), Endospermum chinense (25.40°), and Tetracera sarmentosa (30.37°). The method can efficiently estimate LAD across scales, providing critical structural information of vegetation canopy for ecosystem modeling, including species‐specific leaf strategies and their effects on light interception and photosynthesis in diverse forests.
从叶片到生态系统尺度估算冠层叶片角度:一种基于无人机图像的新型深度学习方法
叶片角分布(LAD)影响植物光合作用、水分利用效率和生态系统初级生产力,对了解地表能量平衡和气候变化响应具有重要意义。传统的LAD测量方法耗时且往往局限于单个站点,阻碍了生态系统尺度上的有效数据采集,并使冠层LAD变化的建模复杂化。我们提出了一种深度学习方法,它比传统的估算LAD方法更经济、更高效、更自动化、更少劳动密集型。该方法使用基于运动点云算法和基于掩模区域的卷积神经网络处理的无人机图像。在单叶尺度上对三种植物进行人工测量验证,证实了所提出的方法具有很高的准确性(光柏属:R2 = 0.87, RMSE = 7.61°;弹性榕:R2 = 0.91, RMSE = 6.72°;Schefflera macrostachya: R2 = 0.85, RMSE = 5.67°)。利用该方法对30 m × 30 m样地内57 032片叶片的叶片倾角进行了有效测量,结果表明,4种代表性树种的叶片倾角差异明显:石竹(Melodinus suaveolens)(平均倾角34.79°)、水杨树(Daphniphyllum calycinum)(31.22°)、中国乳草(Endospermum chinense)(25.40°)和沙门四角(Tetracera sarmentosa)(30.37°)。该方法可以有效地估算不同尺度的LAD,为生态系统建模提供关键的植被冠层结构信息,包括物种特异性叶片策略及其对不同森林中光拦截和光合作用的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信