Where Is All the Plastic? How Microplastic Partitions across Environmental Compartments within a Large Pelagic In-Lake Mesocosm

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Chelsea M. Rochman, Desiree Langenfeld, Rachel N. Cable, Garth A. Covernton, Ludovic Hermabessiere, Rachel McNamee, Cody Veneruzzo, Keenan Munno, Meredith Omer, Michael J. Paterson, Michael D. Rennie, Rebecca Rooney, Melissa B. Duhaime, Kenneth M. Jeffries, Bailey McMeans, Diane Orihel, Matthew J. Hoffman, Jennifer F. Provencher
{"title":"Where Is All the Plastic? How Microplastic Partitions across Environmental Compartments within a Large Pelagic In-Lake Mesocosm","authors":"Chelsea M. Rochman, Desiree Langenfeld, Rachel N. Cable, Garth A. Covernton, Ludovic Hermabessiere, Rachel McNamee, Cody Veneruzzo, Keenan Munno, Meredith Omer, Michael J. Paterson, Michael D. Rennie, Rebecca Rooney, Melissa B. Duhaime, Kenneth M. Jeffries, Bailey McMeans, Diane Orihel, Matthew J. Hoffman, Jennifer F. Provencher","doi":"10.1021/acs.est.5c01441","DOIUrl":null,"url":null,"abstract":"How microplastics transit within aquatic ecosystems and partition among environmental compartments is not fully understood. To increase understanding, we added microplastic fragments ranging in buoyancy (positive: polyethylene (PE), neutral: polystyrene (PS), negative: polyethylene terephthalate (PET)) and size (∼30 to 1400 μm) to surface waters of closed-bottom, in-lake mesocosms (10 m diameter, 2 m depth). To assess residence time, we measured microplastics in surface waters and the water column over a 9-week period. To measure fate, we measured microplastics in the surface water, water column, bottom detritus, and biota (biofilm on the walls, zooplankton, fish) at 9 weeks. The residence times of microplastics were longer at the surface than in the water column, with less dense and smaller particles having the longest residence times. After 9 weeks, nearly all microplastics were on the bottom, with only 3% on the surface, 0.4% in the water column, 2% in biofilm, and <0.01% in zooplankton and fish. The surface water and biofilm on the walls were larger reservoirs than the water column, suggesting that surface microlayers and biofilm on hard substrates are important, yet overlooked, reservoirs of microplastics in aquatic ecosystems. Results inform future hypotheses relevant to monitoring programs and risk assessments.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"27 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.5c01441","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

How microplastics transit within aquatic ecosystems and partition among environmental compartments is not fully understood. To increase understanding, we added microplastic fragments ranging in buoyancy (positive: polyethylene (PE), neutral: polystyrene (PS), negative: polyethylene terephthalate (PET)) and size (∼30 to 1400 μm) to surface waters of closed-bottom, in-lake mesocosms (10 m diameter, 2 m depth). To assess residence time, we measured microplastics in surface waters and the water column over a 9-week period. To measure fate, we measured microplastics in the surface water, water column, bottom detritus, and biota (biofilm on the walls, zooplankton, fish) at 9 weeks. The residence times of microplastics were longer at the surface than in the water column, with less dense and smaller particles having the longest residence times. After 9 weeks, nearly all microplastics were on the bottom, with only 3% on the surface, 0.4% in the water column, 2% in biofilm, and <0.01% in zooplankton and fish. The surface water and biofilm on the walls were larger reservoirs than the water column, suggesting that surface microlayers and biofilm on hard substrates are important, yet overlooked, reservoirs of microplastics in aquatic ecosystems. Results inform future hypotheses relevant to monitoring programs and risk assessments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信