{"title":"SARS-CoV-2 Infection Reactivates HIV-1 Replication From Latency in U1 Cells","authors":"Xue Wang, Weichun Tang, Jiangqin Zhao, Zhiping Ye2, Hang Xie, Indira Hewlett","doi":"10.1002/jcp.70049","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The global impact of COVID-19, caused by SARS-CoV-2, has infected millions, including those with HIV-1. However, it is unclear if SARS-CoV-2 affects HIV-1 reactivation from latency. Here, we used the U1 cell line to explore how SARS-CoV-2 infection affects HIV-1 reactivation from latency, employing real-time PCR assays and Western blot analysis. Our results show higher levels of HIV-1 RNA after SARS-CoV-2 infection. Importantly, we noticed enhanced reactivation of HIV-1 replication in cells infected with viruses carrying a deletion of amino acids R<sub>682</sub>, R<sub>683</sub>, A<sub>684</sub> (RRAΔ) in the spike (S) protein, compared to infections with viruses carrying the wild-type S protein. This is involvement of host transcription factors like NFAT, NF-κB p65, Ap-1, and Sp-1, which facilitate HIV production via TCR-related pathways. Additionally, activation of p-TEFb pathways enhances transcription elongation, upregulates Jak/Stat pathways, leading to increased viral replication, while TLR pathways impact the host immune response. Furthermore, RRAΔ showed increased apoptotic activity through both extrinsic and intrinsic apoptotic signaling pathways compared to wild-type SARS-CoV-2. These indicate that SARS-CoV-2 infection could revive HIV-1 replication from latency. The deletion of amino acids R<sub>682</sub>R<sub>683</sub>A<sub>684</sub> in the viral S protein might regulate further HIV-1 replication and apoptotic conditions, potentially benefiting HIV-1 survival.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 5","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70049","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The global impact of COVID-19, caused by SARS-CoV-2, has infected millions, including those with HIV-1. However, it is unclear if SARS-CoV-2 affects HIV-1 reactivation from latency. Here, we used the U1 cell line to explore how SARS-CoV-2 infection affects HIV-1 reactivation from latency, employing real-time PCR assays and Western blot analysis. Our results show higher levels of HIV-1 RNA after SARS-CoV-2 infection. Importantly, we noticed enhanced reactivation of HIV-1 replication in cells infected with viruses carrying a deletion of amino acids R682, R683, A684 (RRAΔ) in the spike (S) protein, compared to infections with viruses carrying the wild-type S protein. This is involvement of host transcription factors like NFAT, NF-κB p65, Ap-1, and Sp-1, which facilitate HIV production via TCR-related pathways. Additionally, activation of p-TEFb pathways enhances transcription elongation, upregulates Jak/Stat pathways, leading to increased viral replication, while TLR pathways impact the host immune response. Furthermore, RRAΔ showed increased apoptotic activity through both extrinsic and intrinsic apoptotic signaling pathways compared to wild-type SARS-CoV-2. These indicate that SARS-CoV-2 infection could revive HIV-1 replication from latency. The deletion of amino acids R682R683A684 in the viral S protein might regulate further HIV-1 replication and apoptotic conditions, potentially benefiting HIV-1 survival.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.