Statistical Analysis of Performance of Optimisation-Based SAR Autofocus

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Patrick Haughey, Mikhail Gilman, Semyon Tsynkov
{"title":"Statistical Analysis of Performance of Optimisation-Based SAR Autofocus","authors":"Patrick Haughey,&nbsp;Mikhail Gilman,&nbsp;Semyon Tsynkov","doi":"10.1049/rsn2.70030","DOIUrl":null,"url":null,"abstract":"<p>Transionospheric SAR autofocus is a variational algorithm designed to circumvent the deficiencies of conventional autofocus techniques in correcting the distortions of spaceborne SAR images due to ionospheric turbulence. It has demonstrated superior performance in a variety of computer-simulated imaging scenarios. In the current work, we conduct a systematic statistical analysis of transionospheric SAR autofocus aimed at corroborating its robustness and identifying limitations and sensitivities across a broad range of factors that affect the autofocus performance. We employ the range-compressed domain representation where the target reflectivity, antenna signal, and the phase screen depend only on the azimuthal coordinate. The three main factors included in the study are the levels of turbulent perturbations, clutter, and noise. We use the normalised cross correlation (NCC), integrated sidelobe ratio (ISLR), and peak desynchronisation (PD) as a-posteriori performance metrics. A key objective of the current analysis, beyond assessing the autofocus performance, is to identify the directions of how to further improve the algorithm, in terms of both the quality of focusing and associated computational cost.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70030","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Transionospheric SAR autofocus is a variational algorithm designed to circumvent the deficiencies of conventional autofocus techniques in correcting the distortions of spaceborne SAR images due to ionospheric turbulence. It has demonstrated superior performance in a variety of computer-simulated imaging scenarios. In the current work, we conduct a systematic statistical analysis of transionospheric SAR autofocus aimed at corroborating its robustness and identifying limitations and sensitivities across a broad range of factors that affect the autofocus performance. We employ the range-compressed domain representation where the target reflectivity, antenna signal, and the phase screen depend only on the azimuthal coordinate. The three main factors included in the study are the levels of turbulent perturbations, clutter, and noise. We use the normalised cross correlation (NCC), integrated sidelobe ratio (ISLR), and peak desynchronisation (PD) as a-posteriori performance metrics. A key objective of the current analysis, beyond assessing the autofocus performance, is to identify the directions of how to further improve the algorithm, in terms of both the quality of focusing and associated computational cost.

Abstract Image

基于优化的SAR自动对焦性能统计分析
电离层SAR自动对焦是一种变分算法,旨在克服传统自动对焦技术在校正星载SAR图像因电离层湍流引起的畸变方面的不足。它在各种计算机模拟成像场景中表现出优越的性能。在当前的工作中,我们对过渡层SAR自动对焦进行了系统的统计分析,旨在证实其鲁棒性,并确定影响自动对焦性能的各种因素的局限性和灵敏度。我们采用距离压缩域表示,其中目标反射率、天线信号和相位屏仅依赖于方位角坐标。研究中包括的三个主要因素是湍流扰动、杂波和噪声的水平。我们使用归一化互相关(NCC)、集成旁瓣比(ISLR)和峰值去同步(PD)作为后验性能指标。除了评估自动对焦性能之外,当前分析的一个关键目标是确定如何在对焦质量和相关计算成本方面进一步改进算法的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信