Exact Calculation of the Large Deviation Function for k-nary Coalescence

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
R. Rajesh, V. Subashri, Oleg Zaboronski
{"title":"Exact Calculation of the Large Deviation Function for k-nary Coalescence","authors":"R. Rajesh,&nbsp;V. Subashri,&nbsp;Oleg Zaboronski","doi":"10.1007/s10955-025-03412-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study probabilities of rare events in the general coalescence process, <span>\\(kA\\rightarrow \\ell A\\)</span>, where <span>\\(k&gt;\\ell \\)</span>. For arbitrary <span>\\(k, \\ell \\)</span>, by rewriting these probabilities in terms of an effective action, we derive the large deviation function describing the probability of finding <i>N</i> particles at time <i>t</i>, when starting with <i>M</i> particles initially. Additionally, the most probable trajectory corresponding to a fixed rare event is derived.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03412-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03412-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study probabilities of rare events in the general coalescence process, \(kA\rightarrow \ell A\), where \(k>\ell \). For arbitrary \(k, \ell \), by rewriting these probabilities in terms of an effective action, we derive the large deviation function describing the probability of finding N particles at time t, when starting with M particles initially. Additionally, the most probable trajectory corresponding to a fixed rare event is derived.

k系聚结大偏差函数的精确计算
我们研究一般合并过程中罕见事件的概率,\(kA\rightarrow \ell A\),其中\(k>\ell \)。对于任意\(k, \ell \),通过将这些概率改写为有效动作,我们推导出描述在时间t时从M个粒子开始时找到N个粒子的概率的大偏差函数。此外,还推导出了与固定罕见事件相对应的最可能轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信