Assessment of large-scale heterogeneity due to toughness variations in a multipass weld: brittle failure mechanisms and modeling

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Daniela V. Klein, Magnus Boåsen, Pål Efsing, Jonas Faleskog
{"title":"Assessment of large-scale heterogeneity due to toughness variations in a multipass weld: brittle failure mechanisms and modeling","authors":"Daniela V. Klein,&nbsp;Magnus Boåsen,&nbsp;Pål Efsing,&nbsp;Jonas Faleskog","doi":"10.1007/s10704-025-00852-4","DOIUrl":null,"url":null,"abstract":"<div><p>The fracture surfaces of 49 SE(B) toughness tests performed on five different geometries, were carefully investigated by SEM imaging and cross-section analysis. The specimens were extracted from a large multi-pass weld in T-S orientation. The failure characteristics were associated with three distinctly different zones of the weld. Transgranular fracture occurred primarily in the reheated zone and in the as-welded zone with a dendritic microstructure inclined relative to the crack plane. With a dendritic microstructure aligned with the crack plane intergranular fracture occurred. The toughness of the as-welded zone with a low inclination angle, was significantly lower than that obtained in the other two weld zones. Due to the relatively large size of the zones compared to the fracture process zones of the tests, it is appropriate to characterize the failure behavior as large-scale heterogeneity. Weakest-link modeling may be applied locally in each weld zone, giving rise to three different sets of model parameters. A new calibration technique is introduced and used to fit a local weakest-link model to the toughness distribution curves of the individual zones.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00852-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-025-00852-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The fracture surfaces of 49 SE(B) toughness tests performed on five different geometries, were carefully investigated by SEM imaging and cross-section analysis. The specimens were extracted from a large multi-pass weld in T-S orientation. The failure characteristics were associated with three distinctly different zones of the weld. Transgranular fracture occurred primarily in the reheated zone and in the as-welded zone with a dendritic microstructure inclined relative to the crack plane. With a dendritic microstructure aligned with the crack plane intergranular fracture occurred. The toughness of the as-welded zone with a low inclination angle, was significantly lower than that obtained in the other two weld zones. Due to the relatively large size of the zones compared to the fracture process zones of the tests, it is appropriate to characterize the failure behavior as large-scale heterogeneity. Weakest-link modeling may be applied locally in each weld zone, giving rise to three different sets of model parameters. A new calibration technique is introduced and used to fit a local weakest-link model to the toughness distribution curves of the individual zones.

多道焊缝韧性变化的大规模非均质性评估:脆性破坏机制和建模
通过扫描电镜成像和截面分析,对五种不同几何形状的49个SE(B)韧性测试的断口表面进行了仔细的研究。试样是从T-S取向的大型多道次焊缝中提取的。破坏特征与三个明显不同的焊缝区域有关。穿晶断裂主要发生在再加热区和焊接区,枝晶组织相对于裂纹面倾斜。随着枝晶组织与裂纹面对齐,发生晶间断裂。低倾角焊接区的韧性明显低于其他两个焊接区的韧性。由于与试验的断裂过程区相比,这些区域的规模相对较大,因此将破坏行为描述为大规模的非均质性是合适的。最薄弱环节建模可以在每个焊接区域局部应用,从而产生三组不同的模型参数。介绍了一种新的校正技术,并将其应用于局部最弱环节模型拟合到各个区域的韧性分布曲线上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信