P. S. Nandisha, S. Yallappa, Sudha Joseph, B. Umesha, KL Nagashree, Sowbhagya, Hala H. Abd El-Gawad
{"title":"One-Pot Hydrothermal Synthesis of ZnO@Bi2MoO6-MoS2 Ternary Nanoflower Composites for Efficient Photodegradation of Rhodamine B","authors":"P. S. Nandisha, S. Yallappa, Sudha Joseph, B. Umesha, KL Nagashree, Sowbhagya, Hala H. Abd El-Gawad","doi":"10.1007/s10876-025-02828-9","DOIUrl":null,"url":null,"abstract":"<div><p>Ternary heterojunction materials with well-aligned conduction (CB) and valence bands (VB) can significantly enhance photocatalytic performance. In this study, a ZnO@Bi₂MoO₆-MoS<sub>2</sub> (ZBM) nanoflower photocatalyst was synthesized using a one-pot hydrothermal method with urea, thiourea, and citric acid as reducing and stabilizing agents. The structure, morphology, and elemental composition of the ZBM composite were analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray (EDX) spectroscopy. Electrochemical studies, including electron impedance spectroscopy (EIS) and photocurrent measurements, confirmed the material’s strong catalytic potential. Thermal analysis (TGA-DTA) showed that the ZBM composite is stable at high temperatures. The ZnO@Bi₂MoO₆-MoS<sub>2</sub> ternary composite exhibited excellent photocatalytic efficiency, degrading 97.2% of RhB in 60 min with a rate constant of 0.0219 min⁻¹ at neutral pH. It maintained structural integrity after four photodegradation cycles, demonstrating good stability. The optimal catalyst dosage for RhB degradation was determined to be 30 mg. The presence of ZnO and MoS<sub>2</sub> improved charge separation in Bi₂MoO₆, enhancing photocatalytic activity through dual Z-Scheme and S-Scheme mechanisms. Scavenging studies revealed that using peroxide as a scavenger, along with the ZBM photocatalyst, further improved degradation efficiency by increasing the involvement of reactive species such as holes and superoxide (O₂⁻).</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02828-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Ternary heterojunction materials with well-aligned conduction (CB) and valence bands (VB) can significantly enhance photocatalytic performance. In this study, a ZnO@Bi₂MoO₆-MoS2 (ZBM) nanoflower photocatalyst was synthesized using a one-pot hydrothermal method with urea, thiourea, and citric acid as reducing and stabilizing agents. The structure, morphology, and elemental composition of the ZBM composite were analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray (EDX) spectroscopy. Electrochemical studies, including electron impedance spectroscopy (EIS) and photocurrent measurements, confirmed the material’s strong catalytic potential. Thermal analysis (TGA-DTA) showed that the ZBM composite is stable at high temperatures. The ZnO@Bi₂MoO₆-MoS2 ternary composite exhibited excellent photocatalytic efficiency, degrading 97.2% of RhB in 60 min with a rate constant of 0.0219 min⁻¹ at neutral pH. It maintained structural integrity after four photodegradation cycles, demonstrating good stability. The optimal catalyst dosage for RhB degradation was determined to be 30 mg. The presence of ZnO and MoS2 improved charge separation in Bi₂MoO₆, enhancing photocatalytic activity through dual Z-Scheme and S-Scheme mechanisms. Scavenging studies revealed that using peroxide as a scavenger, along with the ZBM photocatalyst, further improved degradation efficiency by increasing the involvement of reactive species such as holes and superoxide (O₂⁻).
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.