{"title":"Space-to-Ground Optical Communication Downlink Scheduling Under Uncertainty of Link Availability","authors":"Pei Lyu;Kanglian Zhao;Shihao Wang;Hangsheng Zhao","doi":"10.1109/LCOMM.2025.3555945","DOIUrl":null,"url":null,"abstract":"Space-to-ground optical communication (STGOC) utilizes laser beams to establish bidirectional links between satellites and ground stations (GSs), which are sensitive to cloud blockage. In practical STGOC downlink scheduling, the uncertainty of link availability caused by cloud motion and dissipation is inevitable. We are the first to address STGOC downlink scheduling under the uncertainty of link availability, where the objective function aims to maximize the amount of data downloaded from the satellites. We provide a formulation of the scheduling problem based on Scenario Generation Approximating (SGA) while preserving the formulation linearity. A Greedy Heuristic-based algorithm is designed to solve the problem. Simulation results indicate that considering uncertainty can enhance data throughput, with the average optimality gap being 0.61%, while the running time is reduced compared to Gurobi and Kuhn-Munkres-based methods.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 5","pages":"1136-1140"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10945431/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Space-to-ground optical communication (STGOC) utilizes laser beams to establish bidirectional links between satellites and ground stations (GSs), which are sensitive to cloud blockage. In practical STGOC downlink scheduling, the uncertainty of link availability caused by cloud motion and dissipation is inevitable. We are the first to address STGOC downlink scheduling under the uncertainty of link availability, where the objective function aims to maximize the amount of data downloaded from the satellites. We provide a formulation of the scheduling problem based on Scenario Generation Approximating (SGA) while preserving the formulation linearity. A Greedy Heuristic-based algorithm is designed to solve the problem. Simulation results indicate that considering uncertainty can enhance data throughput, with the average optimality gap being 0.61%, while the running time is reduced compared to Gurobi and Kuhn-Munkres-based methods.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.