Systematical accumulating and regulating evaluations of leaf functional metabolites in geographically isolated edible medicinal plants of Piper sarmentosum
Liu Ziting , Wu Xiaoqing , Wang Kemei , Bai Yachao , Guo Aimin , Linan Huang , Liao Bin , Zhang Jun
{"title":"Systematical accumulating and regulating evaluations of leaf functional metabolites in geographically isolated edible medicinal plants of Piper sarmentosum","authors":"Liu Ziting , Wu Xiaoqing , Wang Kemei , Bai Yachao , Guo Aimin , Linan Huang , Liao Bin , Zhang Jun","doi":"10.1016/j.jplph.2025.154512","DOIUrl":null,"url":null,"abstract":"<div><div>The edible medicinal plant <em>Piper sarmentosum</em> is widely distributed in south China. This study raised a hypothesis of geographically isolated <em>P</em>. <em>sarmentosum</em> plants possessing potential site- or/and plant-dependent accumulating metabolites, expressing genes, and colonizing bacteria. Here, <em>P</em>. <em>sarmentosum</em> plants of Guangzhou City (PG, comparison group) and Hainan Island (PH, control group) were collected for assaying leaf metabolomes (LMs), leaf transcriptomes (LTs), and leaf-assembled bacterial communities (LABCs), respectively. In LMs and LTs, 930 metabolites and 82,606 unigenes were identified with 552 differently accumulated metabolites (DAMs) and 28,177 differently expressed genes (DEGs), respectively. In LABCs, cluster analysis yielded 822 PG-PH-common, 1114 PG-unique, and 203 PH-unique operational taxonomic units (OTUs). In contrast of PH-LMs, the elevated accumulations of alkaloids and lipids and the decreased accumulations of flavonoids and phenolic acids were observed in PG-LMs. Typically, the DAMs and DEGs were co-enriched in two metabolic pathways of phenylpropanoids and flavonoids, visibly displaying the related DEGs, such as chalcone synthase (<em>CHS</em>), chalcone isomerase (<em>CHI</em>) and phenylalanine amino lyase (<em>PAL</em>), with regulating the functional DAMs, such as phenylalanine, tyrosine, p-coumaric acid, and naringenin. Noticeably, these DAMs were also significantly correlated with a number of different types or/and abundances of leaf-assembled bacteria (DTAB) between PG- and PH-LABCs, such as <em>Flavobacterium</em> and <em>Pseudomonas</em>. Therefore, this study clearly elucidated the functional metabolite accumulations and the close relationships with plant mRNA expressions and bacterial colonizations in geographically isolated plants of <em>P. sarmentosum</em>, providing new insight of selectively utilizing leaf food- and medicine-associated metabolites in different habitats of edible medicinal plants.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"310 ","pages":"Article 154512"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S017616172500094X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The edible medicinal plant Piper sarmentosum is widely distributed in south China. This study raised a hypothesis of geographically isolated P. sarmentosum plants possessing potential site- or/and plant-dependent accumulating metabolites, expressing genes, and colonizing bacteria. Here, P. sarmentosum plants of Guangzhou City (PG, comparison group) and Hainan Island (PH, control group) were collected for assaying leaf metabolomes (LMs), leaf transcriptomes (LTs), and leaf-assembled bacterial communities (LABCs), respectively. In LMs and LTs, 930 metabolites and 82,606 unigenes were identified with 552 differently accumulated metabolites (DAMs) and 28,177 differently expressed genes (DEGs), respectively. In LABCs, cluster analysis yielded 822 PG-PH-common, 1114 PG-unique, and 203 PH-unique operational taxonomic units (OTUs). In contrast of PH-LMs, the elevated accumulations of alkaloids and lipids and the decreased accumulations of flavonoids and phenolic acids were observed in PG-LMs. Typically, the DAMs and DEGs were co-enriched in two metabolic pathways of phenylpropanoids and flavonoids, visibly displaying the related DEGs, such as chalcone synthase (CHS), chalcone isomerase (CHI) and phenylalanine amino lyase (PAL), with regulating the functional DAMs, such as phenylalanine, tyrosine, p-coumaric acid, and naringenin. Noticeably, these DAMs were also significantly correlated with a number of different types or/and abundances of leaf-assembled bacteria (DTAB) between PG- and PH-LABCs, such as Flavobacterium and Pseudomonas. Therefore, this study clearly elucidated the functional metabolite accumulations and the close relationships with plant mRNA expressions and bacterial colonizations in geographically isolated plants of P. sarmentosum, providing new insight of selectively utilizing leaf food- and medicine-associated metabolites in different habitats of edible medicinal plants.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.