Muhammad Tayyab , Abdur Rahim , Muhammad Tariq , Zia Ul Haq Khan , Sana Sabahat , Jibran Iqbal , Dalia Fouad , Abdul Qadeer , Farid S. Ataya , Lubna Sherin
{"title":"Revolutionizing electrochemical sensing: Ultra-sensitive non-enzymatic detection of 4-aminophenol with a novel cu-PANI nanocomposite","authors":"Muhammad Tayyab , Abdur Rahim , Muhammad Tariq , Zia Ul Haq Khan , Sana Sabahat , Jibran Iqbal , Dalia Fouad , Abdul Qadeer , Farid S. Ataya , Lubna Sherin","doi":"10.1016/j.jwpe.2025.107927","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an electrochemical sensor utilizing copper polyaniline (Cu-PANI) nanocomposites (NCs) for the detection of 4-aminophenol. Polyaniline (PANI) is synthesized through the in-situ chemical oxidation polymerization method, which involves the concurrent polymerization of aniline and the generation of copper nanoparticles within the polymer matrix. It is suggested that the copper nanoparticles interact with the mobile groups of polyaniline via electrostatic forces. Fourier transform infrared (FTIR) studies reveal that the synthesized nanocomposites contain functional groups and confirm the interaction between PANI and copper. The surface morphology of the Cu-PANI NCs is examined using scanning electron microscopy (SEM). The electrochemical performance of the Cu-PANI NCs toward 4-AP is assessed through voltammetry (C<em>V</em>) and differential pulse voltammetry (DPV). It is noted that the glassy carbon electrode (GCE) modified with Cu-PANI (Cu-PANI NCs@GCE) shows an outstanding CV response in the presence of a supporting electrolyte (0.1 M H<sub>2</sub>SO<sub>4</sub>) at 0.52 V. Differential pulse voltammetry (DPV) identifies 4-AP within the linear range of 1 to 2000 μM at Cu-PANI NCs@GCE. This sensor is distinguished by its low detection limit of 0.002 μM, high sensitivity of 15.462 μA mM<sup>1</sup> cm<sup>2</sup>, exceptional selectivity in complex matrices, and cost-effectiveness, which make it superior to the previously reported sensor, making it ideal for environmental applications. The Cu-PANI NCs-based electrode material is relatively low-cost, robust, selective, sensitive, and possesses an excellent volume-to-surface ratio. The conclusion is that the electrochemical sensor demonstrates proficient sample-analyzing activity and is capable of effectively analyzing sewage, tap water, and industrial wastewater samples.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"75 ","pages":"Article 107927"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714425009997","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an electrochemical sensor utilizing copper polyaniline (Cu-PANI) nanocomposites (NCs) for the detection of 4-aminophenol. Polyaniline (PANI) is synthesized through the in-situ chemical oxidation polymerization method, which involves the concurrent polymerization of aniline and the generation of copper nanoparticles within the polymer matrix. It is suggested that the copper nanoparticles interact with the mobile groups of polyaniline via electrostatic forces. Fourier transform infrared (FTIR) studies reveal that the synthesized nanocomposites contain functional groups and confirm the interaction between PANI and copper. The surface morphology of the Cu-PANI NCs is examined using scanning electron microscopy (SEM). The electrochemical performance of the Cu-PANI NCs toward 4-AP is assessed through voltammetry (CV) and differential pulse voltammetry (DPV). It is noted that the glassy carbon electrode (GCE) modified with Cu-PANI (Cu-PANI NCs@GCE) shows an outstanding CV response in the presence of a supporting electrolyte (0.1 M H2SO4) at 0.52 V. Differential pulse voltammetry (DPV) identifies 4-AP within the linear range of 1 to 2000 μM at Cu-PANI NCs@GCE. This sensor is distinguished by its low detection limit of 0.002 μM, high sensitivity of 15.462 μA mM1 cm2, exceptional selectivity in complex matrices, and cost-effectiveness, which make it superior to the previously reported sensor, making it ideal for environmental applications. The Cu-PANI NCs-based electrode material is relatively low-cost, robust, selective, sensitive, and possesses an excellent volume-to-surface ratio. The conclusion is that the electrochemical sensor demonstrates proficient sample-analyzing activity and is capable of effectively analyzing sewage, tap water, and industrial wastewater samples.
期刊介绍:
The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies