Yiming Liu , Feifan Fan , Jiawen Li , Binjie Ji , Lu Rong , Lei Ge , Hang Zhao , Yishi Shi , Dayong Wang , Min Wan
{"title":"Total variation extrapolation algorithm for high-fidelity terahertz in-line digital holography","authors":"Yiming Liu , Feifan Fan , Jiawen Li , Binjie Ji , Lu Rong , Lei Ge , Hang Zhao , Yishi Shi , Dayong Wang , Min Wan","doi":"10.1016/j.optlaseng.2025.109048","DOIUrl":null,"url":null,"abstract":"<div><div>In-line digital holography offers the advantages of compact layout and full utilization of the spatial bandwidth product of the detector, making it widely used in the terahertz band. In this paper, we propose an extrapolated iterative algorithm that combines the object's absorption characteristics with the sparsity of the complex field, enabling high-fidelity retrieval of both amplitude and phase images from a single in-line hologram. At the same time, the size of the hologram is numerically expanded without increasing the system complexity or the data acquisition time. The effectiveness of this algorithm is demonstrated through high-quality imaging of a Siemens star, polypropylene sheet, and dragonfly hindwing. Compared with the phase retrieval algorithm which includes positive absorption constraint, extrapolation method and support domain constraint, our method achieves superior reconstruction quality and more effective twin-image suppression, enhancing the resolution from 310 μm (2.6<em>λ</em>) to 228 μm (1.9<em>λ</em>) and enabling high-fidelity reconstruction of a 30 μm dragonfly hindwing. This work will further enhance the application of continuous-wave terahertz in-line digital holography in biomedical imaging and non-destructive testing.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"193 ","pages":"Article 109048"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816625002349","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In-line digital holography offers the advantages of compact layout and full utilization of the spatial bandwidth product of the detector, making it widely used in the terahertz band. In this paper, we propose an extrapolated iterative algorithm that combines the object's absorption characteristics with the sparsity of the complex field, enabling high-fidelity retrieval of both amplitude and phase images from a single in-line hologram. At the same time, the size of the hologram is numerically expanded without increasing the system complexity or the data acquisition time. The effectiveness of this algorithm is demonstrated through high-quality imaging of a Siemens star, polypropylene sheet, and dragonfly hindwing. Compared with the phase retrieval algorithm which includes positive absorption constraint, extrapolation method and support domain constraint, our method achieves superior reconstruction quality and more effective twin-image suppression, enhancing the resolution from 310 μm (2.6λ) to 228 μm (1.9λ) and enabling high-fidelity reconstruction of a 30 μm dragonfly hindwing. This work will further enhance the application of continuous-wave terahertz in-line digital holography in biomedical imaging and non-destructive testing.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques