Nuray Denizhan , Selehattin Yilmaz , Dilsat Ozkan-Ariksoysal , Deniz Emre , Ali Bilici
{"title":"Arginine-functionalized graphene quantum dots@palladium composite modified pencil graphite electrode for electrochemical detection of DNA-mitomycin C interaction","authors":"Nuray Denizhan , Selehattin Yilmaz , Dilsat Ozkan-Ariksoysal , Deniz Emre , Ali Bilici","doi":"10.1016/j.diamond.2025.112433","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, modified pencil graphite electrodes were prepared by synthesizing a novel nanocomposite with palladium and arginine-functionalized graphene quantum dots (Arg@GQDs) for the electrochemical monitoring of anticancer compound mitomycin C (MC) and double-stranded DNA (dsDNA) interaction for the first time. The oxidation responses of both guanine in DNA and the MC drug were measured in the same potential scanning range, and the drug-DNA interaction was determined by the differential pulse voltammetry (DPV) method. To improve the performance of the developed system, experimental parameters such as dsDNA and MC concentration and their interaction times were optimized. The surfaces obtained after the modification were characterized using scanning electron microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Ultraviolet-Visible Spectroscopy (UV–Vis), Fourier Transform Infrared Spectroscopy (FTIR), X-ray photon spectroscopy (XPS), Thermogravimetric analysis (TGA) cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods. The developed nanocomposite-modified electrodes (Arg@GQD@Pd@PGEs) provided higher guanine oxidation signals than PGEs. The limit of detection (LOD) values for dsDNA immobilized on PGE and Arg@GQD@Pd@PGEs were 0.713 pg 50 μL<sup>−1</sup> and 0.019 pg 50 μL<sup>−1</sup>, respectively.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"156 ","pages":"Article 112433"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092596352500490X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, modified pencil graphite electrodes were prepared by synthesizing a novel nanocomposite with palladium and arginine-functionalized graphene quantum dots (Arg@GQDs) for the electrochemical monitoring of anticancer compound mitomycin C (MC) and double-stranded DNA (dsDNA) interaction for the first time. The oxidation responses of both guanine in DNA and the MC drug were measured in the same potential scanning range, and the drug-DNA interaction was determined by the differential pulse voltammetry (DPV) method. To improve the performance of the developed system, experimental parameters such as dsDNA and MC concentration and their interaction times were optimized. The surfaces obtained after the modification were characterized using scanning electron microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Ultraviolet-Visible Spectroscopy (UV–Vis), Fourier Transform Infrared Spectroscopy (FTIR), X-ray photon spectroscopy (XPS), Thermogravimetric analysis (TGA) cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods. The developed nanocomposite-modified electrodes (Arg@GQD@Pd@PGEs) provided higher guanine oxidation signals than PGEs. The limit of detection (LOD) values for dsDNA immobilized on PGE and Arg@GQD@Pd@PGEs were 0.713 pg 50 μL−1 and 0.019 pg 50 μL−1, respectively.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.