Probing a solid electrolyte interphase layer with sub-nanometer pores using redox mediators

IF 42.9 Q1 ELECTROCHEMISTRY
Ximei Lv , Jie Liu , Chenkun Li , Fengjiao Yu , Dengji Xiao , Shulin Zhao , Yuping Wu , Yuhui Chen
{"title":"Probing a solid electrolyte interphase layer with sub-nanometer pores using redox mediators","authors":"Ximei Lv ,&nbsp;Jie Liu ,&nbsp;Chenkun Li ,&nbsp;Fengjiao Yu ,&nbsp;Dengji Xiao ,&nbsp;Shulin Zhao ,&nbsp;Yuping Wu ,&nbsp;Yuhui Chen","doi":"10.1016/j.esci.2024.100351","DOIUrl":null,"url":null,"abstract":"<div><div>The solid electrolyte interphase (SEI) layer is crucial for lithium-ion batteries and has a significant impact on the electrochemical performance of negative electrodes, particularly for conversion-type materials with large volume changes and metallic lithium anode. However, the SEI layer has not yet been well understood. In this work, we used redox mediators of various sizes to probe the SEI layer that formed in carbonate-based electrolytes. The SEI layer has diffusion channels that allow the mediators smaller than benzoquinone (5.7 ​Å) to pass, suggesting that lithium ions have to partially de-solvate to pass through. Additionally, due to partial desolvation, the diffusion coefficient in the diffusion channels was higher than that in the bulk electrolytes. Both lithium salts and solvents influenced the size and areal density of channels. Herein, we aim to enhance comprehension of SEI structure and provide a method to study porous SEI layers using mediators, which can be extended to other electrochemical systems.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 3","pages":"Article 100351"},"PeriodicalIF":42.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724001502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The solid electrolyte interphase (SEI) layer is crucial for lithium-ion batteries and has a significant impact on the electrochemical performance of negative electrodes, particularly for conversion-type materials with large volume changes and metallic lithium anode. However, the SEI layer has not yet been well understood. In this work, we used redox mediators of various sizes to probe the SEI layer that formed in carbonate-based electrolytes. The SEI layer has diffusion channels that allow the mediators smaller than benzoquinone (5.7 ​Å) to pass, suggesting that lithium ions have to partially de-solvate to pass through. Additionally, due to partial desolvation, the diffusion coefficient in the diffusion channels was higher than that in the bulk electrolytes. Both lithium salts and solvents influenced the size and areal density of channels. Herein, we aim to enhance comprehension of SEI structure and provide a method to study porous SEI layers using mediators, which can be extended to other electrochemical systems.

Abstract Image

利用氧化还原介质探测具有亚纳米孔的固体电解质间相层
固体电解质间相(SEI)层对锂离子电池至关重要,对负极的电化学性能有重要影响,特别是对于体积变化大的转换型材料和金属锂阳极。然而,人们还没有很好地理解SEI层。在这项工作中,我们使用不同尺寸的氧化还原介质来探测碳酸盐基电解质中形成的SEI层。SEI层具有扩散通道,允许比苯醌(5.7 Å)小的介质通过,这表明锂离子必须部分去溶剂化才能通过。此外,由于部分脱溶,扩散通道中的扩散系数高于散装电解质中的扩散系数。锂盐和溶剂都影响通道的大小和面密度。本文旨在增强对SEI结构的理解,并提供一种利用介质研究多孔SEI层的方法,该方法可扩展到其他电化学体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信