Yang Li , Guining Shao , Xinyu Zheng , Yansong Jia , Yanghong Xia , Yuhai Dou , Ming Huang , Chaohua Gu , Jianfeng Shi , Jinyang Zheng , Shixue Dou
{"title":"Cutting-edge advances in pressurized electrocatalytic reactors","authors":"Yang Li , Guining Shao , Xinyu Zheng , Yansong Jia , Yanghong Xia , Yuhai Dou , Ming Huang , Chaohua Gu , Jianfeng Shi , Jinyang Zheng , Shixue Dou","doi":"10.1016/j.esci.2024.100369","DOIUrl":null,"url":null,"abstract":"<div><div>As an important component in electrochemical energy conversion and storage systems, electrochemical reactors (ECRs) are widely used for commodity chemical synthesis, including electrolytic H<sub>2</sub> production, NH<sub>3</sub> synthesis, and high-value CO<sub>2</sub> utilization. However, ECRs pose challenges related to low energy efficiency and selectivity due to the low solubility of their gaseous reactants, slow kinetics, and limitations in mass transfer. It is thus imperative to develop advanced high-pressure (HP) ECRs to address these issues. In this review, we start by presenting a comprehensive analysis of the fundamental mechanisms of HP ECRs. Then, we summarize the state-of-the-art HP ECR applications for water electrolysis, the N<sub>2</sub> reduction reaction, and the CO<sub>2</sub> reduction reaction. We also demonstrate that mathematical simulations are valuable tools for digital validation and guidance to accelerate the design of better reactors. Finally, we make recommendations on developing relevant specifications and standards for the industrial application of HP ECRs.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 3","pages":"Article 100369"},"PeriodicalIF":42.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266714172400168X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
As an important component in electrochemical energy conversion and storage systems, electrochemical reactors (ECRs) are widely used for commodity chemical synthesis, including electrolytic H2 production, NH3 synthesis, and high-value CO2 utilization. However, ECRs pose challenges related to low energy efficiency and selectivity due to the low solubility of their gaseous reactants, slow kinetics, and limitations in mass transfer. It is thus imperative to develop advanced high-pressure (HP) ECRs to address these issues. In this review, we start by presenting a comprehensive analysis of the fundamental mechanisms of HP ECRs. Then, we summarize the state-of-the-art HP ECR applications for water electrolysis, the N2 reduction reaction, and the CO2 reduction reaction. We also demonstrate that mathematical simulations are valuable tools for digital validation and guidance to accelerate the design of better reactors. Finally, we make recommendations on developing relevant specifications and standards for the industrial application of HP ECRs.