A Mixed-Valence and Mixed-Spin Two-Dimensional Ferromagnetic Metal–Organic Coordination Framework

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-10 DOI:10.1021/acsnano.5c02807
Xiaobo Wang, Chia-Hsiu Hsu, Chengkun Lyu, Feng-Chuan Chuang, Calvin Pei Yu Wong, Li Huang, Kuan Eng Johnson Goh, Pei-Nian Liu, Nian Lin
{"title":"A Mixed-Valence and Mixed-Spin Two-Dimensional Ferromagnetic Metal–Organic Coordination Framework","authors":"Xiaobo Wang, Chia-Hsiu Hsu, Chengkun Lyu, Feng-Chuan Chuang, Calvin Pei Yu Wong, Li Huang, Kuan Eng Johnson Goh, Pei-Nian Liu, Nian Lin","doi":"10.1021/acsnano.5c02807","DOIUrl":null,"url":null,"abstract":"Spin-mixed systems with distinct magnetic sublattices present rich physical behaviors and hold promise for magnetic memory, thermomagnetic recording, and optoelectronics. However, most experimental studies remain confined to molecular magnetic salts rather than monolayer two-dimensional (2D) systems. Here, we report the synthesis and characterization of a 2D metal–organic framework (MOF) of Fe<sub>2</sub>(Fe-DPyP)<sub>3</sub>, constructed from 5,15-di(4-pyridyl)-10,20-diphenylporphyrin (DPyP) molecules and iron atoms on a Au(111) substrate. Through scanning tunneling microscopy and density functional theory (DFT) calculations, we reveal dual coordination modes: (1) peripheral iron atoms (Fe<sub><i>c</i></sub>) coordinate with the pyridyl substituents, forming a honeycomb lattice, and (2) central iron atoms (Fe<sub><i>m</i></sub>) bind within the porphyrin core, creating a kagome lattice. Scanning tunneling spectroscopy highlights distinct spin-flip excitations in the bivalent Fe<sub><i>m</i></sub> atoms with a magnetic spin state of <i>S</i> = 1, while the monovalent Fe<sub><i>c</i></sub> atoms display a V-shaped dip around the Fermi level, attributed to the quenched spin excitations or a soft Coulomb gap, with a magnetic spin state of <i>S</i> = 3/2. DFT calculations reveal an in-plane ferromagnetic ground state with spin-polarized Fe d orbitals and molecular p orbitals. This work contributes to the understanding of mixed-valence and mixed-spin 2D coordination networks with implications for the development of next-generation quantum materials and spintronic devices.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"78 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c02807","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spin-mixed systems with distinct magnetic sublattices present rich physical behaviors and hold promise for magnetic memory, thermomagnetic recording, and optoelectronics. However, most experimental studies remain confined to molecular magnetic salts rather than monolayer two-dimensional (2D) systems. Here, we report the synthesis and characterization of a 2D metal–organic framework (MOF) of Fe2(Fe-DPyP)3, constructed from 5,15-di(4-pyridyl)-10,20-diphenylporphyrin (DPyP) molecules and iron atoms on a Au(111) substrate. Through scanning tunneling microscopy and density functional theory (DFT) calculations, we reveal dual coordination modes: (1) peripheral iron atoms (Fec) coordinate with the pyridyl substituents, forming a honeycomb lattice, and (2) central iron atoms (Fem) bind within the porphyrin core, creating a kagome lattice. Scanning tunneling spectroscopy highlights distinct spin-flip excitations in the bivalent Fem atoms with a magnetic spin state of S = 1, while the monovalent Fec atoms display a V-shaped dip around the Fermi level, attributed to the quenched spin excitations or a soft Coulomb gap, with a magnetic spin state of S = 3/2. DFT calculations reveal an in-plane ferromagnetic ground state with spin-polarized Fe d orbitals and molecular p orbitals. This work contributes to the understanding of mixed-valence and mixed-spin 2D coordination networks with implications for the development of next-generation quantum materials and spintronic devices.

Abstract Image

混合价和混合自旋二维铁磁金属-有机配位框架
具有不同磁亚晶格的自旋混合系统表现出丰富的物理行为,并有望用于磁记忆,热磁记录和光电子学。然而,大多数实验研究仍然局限于分子磁性盐,而不是单层二维(2D)系统。在这里,我们报道了在Au(111)底物上由5,15-二(4-吡啶基)-10,20-二苯基卟啉(DPyP)分子和铁原子构成的Fe2(Fe-DPyP)3的二维金属有机骨架(MOF)的合成和表征。通过扫描隧道显微镜和密度泛函理论(DFT)计算,我们揭示了双重配位模式:(1)外围铁原子(Fec)与吡啶基取代基配位,形成蜂窝晶格;(2)中心铁原子(Fem)结合在卟啉核心内,形成kagome晶格。扫描隧道光谱显示,在磁自旋态为S = 1的二价Fec原子中有明显的自旋翻转激发,而在磁自旋态为S = 3/2的一价Fec原子中,由于自旋激发的淬灭或软库仑间隙,在费米能级附近呈现出v形倾斜。DFT计算揭示了具有自旋极化铁d轨道和分子p轨道的平面内铁磁基态。这项工作有助于理解混合价和混合自旋二维配位网络,对下一代量子材料和自旋电子器件的发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信