Yisheng Peng, Hui Liu, Mengmeng Miao, Xu Cheng, Shangqing Chen, Kaifei Yan, Jing Mu, Hongwei Cheng, Gang Liu
{"title":"Micro-Nano Convergence-Driven Radiotheranostic Revolution in Hepatocellular Carcinoma","authors":"Yisheng Peng, Hui Liu, Mengmeng Miao, Xu Cheng, Shangqing Chen, Kaifei Yan, Jing Mu, Hongwei Cheng, Gang Liu","doi":"10.1021/acsami.5c05525","DOIUrl":null,"url":null,"abstract":"Radiotherapy, as an important means of treating hepatocellular carcinoma (HCC), has shown unique therapeutic advantages, especially in patients who are unable to undergo surgery or transplantation. It mainly includes external radiotherapy, transarterial radioembolization and intratumoral radioactive particle implantation. However, under the influence of factors such as the hypoxic characteristics of the liver tumor microenvironment and the radioresistance of tumor cells, the effect of radiotherapy may be unstable and may cause side effects, affecting the quality of life of patients. In recent years, with the development of nanotechnology, drug delivery systems based on micro-nanomaterials have provided new solutions for improving the effect of radiotherapy for HCC. Despite this, the application of micro-nano drug delivery systems in the treatment of HCC still faces some challenges, mainly including the in vivo safety and in vivo metabolism of micro-nano materials. This article reviews the latest progress of micro-nano materials in the treatment of HCC, especially their application in radiosensitization and their clinical translation potential. This article systematically analyzes the role of micro-nanomaterials in external or internal radiotherapy sensitization and radioimmunotherapy and explores the advantages of micro-nanomaterials in improving the treatment effect of HCC.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"1 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c05525","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiotherapy, as an important means of treating hepatocellular carcinoma (HCC), has shown unique therapeutic advantages, especially in patients who are unable to undergo surgery or transplantation. It mainly includes external radiotherapy, transarterial radioembolization and intratumoral radioactive particle implantation. However, under the influence of factors such as the hypoxic characteristics of the liver tumor microenvironment and the radioresistance of tumor cells, the effect of radiotherapy may be unstable and may cause side effects, affecting the quality of life of patients. In recent years, with the development of nanotechnology, drug delivery systems based on micro-nanomaterials have provided new solutions for improving the effect of radiotherapy for HCC. Despite this, the application of micro-nano drug delivery systems in the treatment of HCC still faces some challenges, mainly including the in vivo safety and in vivo metabolism of micro-nano materials. This article reviews the latest progress of micro-nano materials in the treatment of HCC, especially their application in radiosensitization and their clinical translation potential. This article systematically analyzes the role of micro-nanomaterials in external or internal radiotherapy sensitization and radioimmunotherapy and explores the advantages of micro-nanomaterials in improving the treatment effect of HCC.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.