{"title":"PTPN22 as a therapeutic target in intervertebral disc degeneration: Modulating mitophagy and pyroptosis through the PI3K/AKT/mTOR axis","authors":"Haibo Liang, Shu Yang, Yeheng Huang, Yuxuan Zhu, Qihang Wu, Zhouwei Wu, Sunlong Li, Yifeng Shi, Zhenya Chen, Haiming Jin, Xiangyang Wang","doi":"10.1016/j.jare.2025.05.017","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Intervertebral disc degeneration (IDD) is a predominant risk factor for low back pain (LBP). However, the mechanisms underlying IDD progression remain unclear.<h3>Objectives</h3>The protein tyrosine phosphatase non-receptor type 22 (PTPN22) is associated with various chronic inflammatory and autoimmune conditions. However, its role in the progression of IDD remains obscure. This investigation delves into the function of PTPN22 within IDD and examines its molecular mechanisms.<h3>Methods</h3>The expression levels of PTPN22 in human and rat degenerative nucleus pulposus (NP) cells were analyzed using Western blot and immunohistochemistry. Following PTPN22 knockdown via lentiviral transfection, pyroptosis, extracellular matrix (ECM) degradation, mitophagy, and mitochondrial function were assessed using Western blot, immunofluorescence, Calcein-AM/PI staining, qPCR, Seahorse, JC-1, and MitoSOX assays. The roles of autophagy and the PI3K/AKT/mTOR pathway were further investigated using the autophagy inhibitor 3-MA, Baf-A1, and the PI3K agonist 740Y-P. A puncture-induced rat model was established, and the effects of LV-shPTPN22 on IDD were evaluated through imaging and histological analyses.<h3>Results</h3>We noted an upregulation of PTPN22 in degenerative NP cells. A deficiency in PTPN22 was found to enhance mitophagy, thereby alleviating hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced mitochondrial dysfunction and consequently mitigating NP cell pyroptosis and ECM degradation. Inhibition of the PI3K/AKT/mTOR pathway appears to play a pivotal role in the protective effects of PTPN22 deficiency against IDD. Experiments conducted in vivo revealed that PTPN22 knockdown significantly curtails the progression of IDD.<h3>Conclusion</h3>In summary, PTPN22 knockdown alleviates IDD progression by reducing pyroptosis and ECM degradation through enhanced mitophagy. This highlights PTPN22 as a critical contributor to IDD and a promising therapeutic target.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"12 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.05.017","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Intervertebral disc degeneration (IDD) is a predominant risk factor for low back pain (LBP). However, the mechanisms underlying IDD progression remain unclear.
Objectives
The protein tyrosine phosphatase non-receptor type 22 (PTPN22) is associated with various chronic inflammatory and autoimmune conditions. However, its role in the progression of IDD remains obscure. This investigation delves into the function of PTPN22 within IDD and examines its molecular mechanisms.
Methods
The expression levels of PTPN22 in human and rat degenerative nucleus pulposus (NP) cells were analyzed using Western blot and immunohistochemistry. Following PTPN22 knockdown via lentiviral transfection, pyroptosis, extracellular matrix (ECM) degradation, mitophagy, and mitochondrial function were assessed using Western blot, immunofluorescence, Calcein-AM/PI staining, qPCR, Seahorse, JC-1, and MitoSOX assays. The roles of autophagy and the PI3K/AKT/mTOR pathway were further investigated using the autophagy inhibitor 3-MA, Baf-A1, and the PI3K agonist 740Y-P. A puncture-induced rat model was established, and the effects of LV-shPTPN22 on IDD were evaluated through imaging and histological analyses.
Results
We noted an upregulation of PTPN22 in degenerative NP cells. A deficiency in PTPN22 was found to enhance mitophagy, thereby alleviating hydrogen peroxide (H2O2)-induced mitochondrial dysfunction and consequently mitigating NP cell pyroptosis and ECM degradation. Inhibition of the PI3K/AKT/mTOR pathway appears to play a pivotal role in the protective effects of PTPN22 deficiency against IDD. Experiments conducted in vivo revealed that PTPN22 knockdown significantly curtails the progression of IDD.
Conclusion
In summary, PTPN22 knockdown alleviates IDD progression by reducing pyroptosis and ECM degradation through enhanced mitophagy. This highlights PTPN22 as a critical contributor to IDD and a promising therapeutic target.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.