Lulu Wang, Ruilong Zhang, Zirui Li, Xiaohua Tian, Li Chen, Xiaohui Dai, Yongsheng Yan, Jiangdong Dai, Jianming Pan
{"title":"Nano-armored super-hydrophilic antifouling membrane through dual counter-diffusion-induced process for separation of crude oil emulsion","authors":"Lulu Wang, Ruilong Zhang, Zirui Li, Xiaohua Tian, Li Chen, Xiaohui Dai, Yongsheng Yan, Jiangdong Dai, Jianming Pan","doi":"10.1016/j.seppur.2025.133351","DOIUrl":null,"url":null,"abstract":"Conventional superhydrophilic membrane surfaces effectively resist low-viscosity oil stains, but it is difficult to avoid crude oil adhesion. There is still room for improvement in the anti-fouling performance throughout the crude oil emulsion separation process. Using metal salts and phytic acid molecules as building blocks, a nano-armored superhydrophilic metal-phytic acid coordination self-assembled membrane (M−PA/CAM) is prepared with a dual counter-diffusion-induced strategy. Strong Lewis acid Fe<sup>3+</sup> ions are easily coordinated with Lewis base phytic acid to form a three-dimensional cross-linked network. The addition of NaCl to the coagulation bath resulted in an increase in surface roughness. Therefore, the optimized Fe-PA/CAM have a high porosity of 60.9 % and a roughness of 182 nm, showing superhydrophilicity and underwater superoleophobicity. The pure water permeability is capable of reaching 805.9 L m<sup>-2</sup>h<sup>−1</sup> bar<sup>−1</sup>. After 3.0h of circulating filtration, a 1000 ppm crude oil-in-water emulsion can reach a recovery rate of 99 %. Compared with PA-Fe modified PVDF membranes prepared by impregnation and blending methods, the permeation attenuation rate of Fe-PA/CAM is reduced by more than 50 %. The coating had strong hydration capacity, verified by in-situ DRIFTS analysis of water adsorption kinetics. Both the Young’s modulus and tensile strength exceeded PVDFM by 1.9 and 1.4 times respectively. The composite membrane exhibits chemical and mechanical stability and shows promise in actual oily wastewater treatment.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"1 1","pages":"133351"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.133351","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional superhydrophilic membrane surfaces effectively resist low-viscosity oil stains, but it is difficult to avoid crude oil adhesion. There is still room for improvement in the anti-fouling performance throughout the crude oil emulsion separation process. Using metal salts and phytic acid molecules as building blocks, a nano-armored superhydrophilic metal-phytic acid coordination self-assembled membrane (M−PA/CAM) is prepared with a dual counter-diffusion-induced strategy. Strong Lewis acid Fe3+ ions are easily coordinated with Lewis base phytic acid to form a three-dimensional cross-linked network. The addition of NaCl to the coagulation bath resulted in an increase in surface roughness. Therefore, the optimized Fe-PA/CAM have a high porosity of 60.9 % and a roughness of 182 nm, showing superhydrophilicity and underwater superoleophobicity. The pure water permeability is capable of reaching 805.9 L m-2h−1 bar−1. After 3.0h of circulating filtration, a 1000 ppm crude oil-in-water emulsion can reach a recovery rate of 99 %. Compared with PA-Fe modified PVDF membranes prepared by impregnation and blending methods, the permeation attenuation rate of Fe-PA/CAM is reduced by more than 50 %. The coating had strong hydration capacity, verified by in-situ DRIFTS analysis of water adsorption kinetics. Both the Young’s modulus and tensile strength exceeded PVDFM by 1.9 and 1.4 times respectively. The composite membrane exhibits chemical and mechanical stability and shows promise in actual oily wastewater treatment.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.