Roy Straver, Carlo Vermeulen, Joe R Verity-Legg, Marc Pagès-Gallego, Dieter G G Stoker, Alexander van Oudenaarden, Jeroen de Ridder
{"title":"ReQuant: improved base modification calling by k-mer value imputation","authors":"Roy Straver, Carlo Vermeulen, Joe R Verity-Legg, Marc Pagès-Gallego, Dieter G G Stoker, Alexander van Oudenaarden, Jeroen de Ridder","doi":"10.1093/nar/gkaf323","DOIUrl":null,"url":null,"abstract":"Nanopore sequencing allows identification of base modifications, such as methylation, directly from raw current data. Prevailing approaches, including deep learning (DL) methods, require training data covering all possible sequence contexts. These data can be prohibitively expensive or impossible to obtain for some modifications. Hence, research into DNA modifications focuses on the most prevalent modification in human DNA: 5mC in a CpG context. Improved generalization is required to reach the technology’s full potential: calling any modification from raw current values. We developed ReQuant, an algorithm to impute full, k-mer based, modification models from limited k-mer context training data. ReQuant is highly accurate for calling modifications (CpG/GpC methylation and CpG glucosylation) in Lambda Phage R9 data when fitting on ≤25% of all possible 6-mers with a modification and extends to human R10 data. The success of our approach shows that DNA modifications have a consistent and therefore predictable effect on Nanopore current levels, suggesting that interpretable rule-based imputation in unseen contexts is possible. Our approach circumvents the need for modification-specific DL tools and enables modification calling when not all sequence contexts can be obtained, opening a vast field of biological base modification research.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"9 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf323","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanopore sequencing allows identification of base modifications, such as methylation, directly from raw current data. Prevailing approaches, including deep learning (DL) methods, require training data covering all possible sequence contexts. These data can be prohibitively expensive or impossible to obtain for some modifications. Hence, research into DNA modifications focuses on the most prevalent modification in human DNA: 5mC in a CpG context. Improved generalization is required to reach the technology’s full potential: calling any modification from raw current values. We developed ReQuant, an algorithm to impute full, k-mer based, modification models from limited k-mer context training data. ReQuant is highly accurate for calling modifications (CpG/GpC methylation and CpG glucosylation) in Lambda Phage R9 data when fitting on ≤25% of all possible 6-mers with a modification and extends to human R10 data. The success of our approach shows that DNA modifications have a consistent and therefore predictable effect on Nanopore current levels, suggesting that interpretable rule-based imputation in unseen contexts is possible. Our approach circumvents the need for modification-specific DL tools and enables modification calling when not all sequence contexts can be obtained, opening a vast field of biological base modification research.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.