Continuous-Variable Square-Ladder Cluster States in a Microwave Frequency Comb

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Fabio Lingua, J. C. Rivera Hernández, Michele Cortinovis, David B. Haviland
{"title":"Continuous-Variable Square-Ladder Cluster States in a Microwave Frequency Comb","authors":"Fabio Lingua, J. C. Rivera Hernández, Michele Cortinovis, David B. Haviland","doi":"10.1103/physrevlett.134.183602","DOIUrl":null,"url":null,"abstract":"We describe an experiment demonstrating the generation of three independent square-ladder continuous-variable cluster states with up to 94 qumodes of a microwave frequency comb. This entanglement structure at a large scale is realized by injecting vacuum fluctuations into a Josephson Parametric Amplifier pumped by three coherent signals around twice its resonance frequency, each having a particular well-defined phase relation. We reach up to 1.4 dB of squeezing of the nullifier that verifies the cluster state on the square ladder graph. Our results are consistent with a more familiar measure of two-mode squeezing, where we find up to 5.42 dB for one pump, and up to 1 dB for three pumps. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"22 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.183602","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We describe an experiment demonstrating the generation of three independent square-ladder continuous-variable cluster states with up to 94 qumodes of a microwave frequency comb. This entanglement structure at a large scale is realized by injecting vacuum fluctuations into a Josephson Parametric Amplifier pumped by three coherent signals around twice its resonance frequency, each having a particular well-defined phase relation. We reach up to 1.4 dB of squeezing of the nullifier that verifies the cluster state on the square ladder graph. Our results are consistent with a more familiar measure of two-mode squeezing, where we find up to 5.42 dB for one pump, and up to 1 dB for three pumps. Published by the American Physical Society 2025
微波频率梳中的连续变方梯簇态
我们描述了一个实验,证明了三个独立的方形阶梯连续变量簇态的产生,最多有94个微波频率梳的准模。这种大尺度的纠缠结构是通过向约瑟夫森参量放大器注入真空波动来实现的,该放大器由三个共振频率为其两倍的相干信号泵浦,每个信号都具有特定的定义良好的相位关系。我们对验证方梯图上的聚类状态的nullifier进行了高达1.4 dB的压缩。我们的结果与更熟悉的双模压缩测量一致,其中我们发现一个泵高达5.42 dB,三个泵高达1 dB。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信