Kevin Albert Kasper, Gerardo Figueroa Romero, Dania L. Perez, Avery M. Miller, David A. Gonzales, Jesus Siqueiros, David S. Margolis, Philipp Gutruf
{"title":"Continuous operation of battery-free implants enables advanced fracture recovery monitoring","authors":"Kevin Albert Kasper, Gerardo Figueroa Romero, Dania L. Perez, Avery M. Miller, David A. Gonzales, Jesus Siqueiros, David S. Margolis, Philipp Gutruf","doi":"10.1126/sciadv.adt7488","DOIUrl":null,"url":null,"abstract":"<div >Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is therefore paramount, requiring a system-level solution that enables seamless connection of wearable and implantable devices. Here, we present a technological framework that enables wireless, battery-free implant operation in freely moving subjects, with streaming of high-fidelity information from low-displacement, battery-free implants with little user interaction. This is accomplished using at-distance wirelessly recharged, wearable biosymbiotic devices for powering and communication with fully implantable NFC-enabled implants. We demonstrate this capability with osseosurface electronics that stream bone health insight. Eleven-month-long large animal studies highlight the ability of implants to relay information on bone health without negative impact on the subjects. Clinical translatability is shown through fracture healing studies that demonstrate biomarkers of bone union.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 19","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt7488","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt7488","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Substantial hurdles in achieving a digitally connected body with seamless, chronic, high-fidelity organ interfaces include challenges of sourcing energy and ensuring reliable connectivity. Operation is currently limited by batteries that occupy large volumes. Wireless, battery-free operation is therefore paramount, requiring a system-level solution that enables seamless connection of wearable and implantable devices. Here, we present a technological framework that enables wireless, battery-free implant operation in freely moving subjects, with streaming of high-fidelity information from low-displacement, battery-free implants with little user interaction. This is accomplished using at-distance wirelessly recharged, wearable biosymbiotic devices for powering and communication with fully implantable NFC-enabled implants. We demonstrate this capability with osseosurface electronics that stream bone health insight. Eleven-month-long large animal studies highlight the ability of implants to relay information on bone health without negative impact on the subjects. Clinical translatability is shown through fracture healing studies that demonstrate biomarkers of bone union.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.