Deep compressed multichannel adaptive optics scanning light ophthalmoscope

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jongwan Park, Kristen Hagan, Theodore B. DuBose, Ramiro S. Maldonado, Ryan P. McNabb, Alfredo Dubra, Joseph A. Izatt, Sina Farsiu
{"title":"Deep compressed multichannel adaptive optics scanning light ophthalmoscope","authors":"Jongwan Park,&nbsp;Kristen Hagan,&nbsp;Theodore B. DuBose,&nbsp;Ramiro S. Maldonado,&nbsp;Ryan P. McNabb,&nbsp;Alfredo Dubra,&nbsp;Joseph A. Izatt,&nbsp;Sina Farsiu","doi":"10.1126/sciadv.adr5912","DOIUrl":null,"url":null,"abstract":"<div >Adaptive optics scanning light ophthalmoscopy (AOSLO) reveals individual retinal cells and their function, microvasculature, and micropathologies in vivo. As compared to the single-channel offset pinhole and two-channel split-detector nonconfocal AOSLO designs, by providing multidirectional imaging capabilities, a recent generation of multidetector and (multi-)offset aperture AOSLO modalities has been demonstrated to provide critical information about retinal microstructures. However, increasing detection channels requires expensive optical components and/or critically increases imaging time. To address this issue, we present an innovative combination of machine learning and optics as an integrated technology to compressively capture 12 nonconfocal channel AOSLO images simultaneously. Imaging of healthy participants and diseased subjects using the proposed deep compressed multichannel AOSLO showed enhanced visualization of rods, cones, and mural cells with over an order-of-magnitude improvement in imaging speed as compared to conventional offset aperture imaging. To facilitate the adaptation and integration with other in vivo microscopy systems, we made optical design, acquisition, and computational reconstruction codes open source.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 19","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr5912","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr5912","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Adaptive optics scanning light ophthalmoscopy (AOSLO) reveals individual retinal cells and their function, microvasculature, and micropathologies in vivo. As compared to the single-channel offset pinhole and two-channel split-detector nonconfocal AOSLO designs, by providing multidirectional imaging capabilities, a recent generation of multidetector and (multi-)offset aperture AOSLO modalities has been demonstrated to provide critical information about retinal microstructures. However, increasing detection channels requires expensive optical components and/or critically increases imaging time. To address this issue, we present an innovative combination of machine learning and optics as an integrated technology to compressively capture 12 nonconfocal channel AOSLO images simultaneously. Imaging of healthy participants and diseased subjects using the proposed deep compressed multichannel AOSLO showed enhanced visualization of rods, cones, and mural cells with over an order-of-magnitude improvement in imaging speed as compared to conventional offset aperture imaging. To facilitate the adaptation and integration with other in vivo microscopy systems, we made optical design, acquisition, and computational reconstruction codes open source.

Abstract Image

深压缩多通道自适应光学扫描光检眼镜
自适应光学扫描光眼镜(AOSLO)显示个体视网膜细胞及其功能,微血管和微病理在体内。与单通道偏位针孔和双通道分裂检测器非共聚焦aslo设计相比,通过提供多向成像能力,最近一代的多探测器和(多)偏位孔径aslo模式已被证明可以提供有关视网膜微结构的关键信息。然而,增加检测通道需要昂贵的光学元件和/或大幅增加成像时间。为了解决这个问题,我们提出了一种机器学习和光学的创新组合,作为一种集成技术,同时压缩捕获12个非共聚焦通道aslo图像。使用深度压缩多通道aslo对健康受试者和患病受试者的成像显示,与传统偏移孔径成像相比,杆状细胞、视锥细胞和壁细胞的可视化增强,成像速度提高了一个数量级以上。为了便于与其他体内显微镜系统的适应和集成,我们将光学设计、获取和计算重建代码开源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信