Parya Broomandi, Mehdi Bagheri, Ali Mozhdehi Fard, Aram Fathian, Mohammad Abdoli, Adib Roshani, Sadjad Shafiei, Michael Leuchner, Jong Ryeol Kim
{"title":"Energy Generation and Carbon Footprint under Future Projections (2022–2100) of Central Asian Temperature Extremes","authors":"Parya Broomandi, Mehdi Bagheri, Ali Mozhdehi Fard, Aram Fathian, Mohammad Abdoli, Adib Roshani, Sadjad Shafiei, Michael Leuchner, Jong Ryeol Kim","doi":"10.1002/gch2.202400356","DOIUrl":null,"url":null,"abstract":"<p>Limiting the global temperature rise to 1.5 °C is becoming increasingly difficult. The study analyzed data from 700 locations (1962–2100) to assess climate change impacts on heating-cooling energy and carbon footprint in under-researched Central Asia (CA). Under SSP2-4.5, icing and frost days reduce, while summer days and tropical nights increase. Central Asian countries will see an increase in cooling needs despite the projected decline in heating demands, with Kyrgyzstan experiencing the highest rise in cooling degree days, projected to increase by 132% and 165% in the near-future under SSP2-4.5 and SSP5-8.5, respectively. As a result, cooling energy generation is expected to rise by 39% and 92% under SSP2-4.5 and SSP5-8.5, respectively. However, CO<sub>2</sub> emissions for cooling are much lower in Kyrgyzstan and Tajikistan due to their reliance on renewable energy. CO<sub>2</sub> emissions in these countries are projected to be ≈10 times lower than in other parts of CA. From 2022 to 2100, cooling-related emissions are estimated to increase by 41% and 80% under SSP2-4.5 and SSP5-8.5, respectively across CA. Urgent adaptation is needed for resilient cities and stable power by expanding renewables, modernizing infrastructure, boosting efficiency, adopting policies, and fostering cooperation.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"9 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202400356","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202400356","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Limiting the global temperature rise to 1.5 °C is becoming increasingly difficult. The study analyzed data from 700 locations (1962–2100) to assess climate change impacts on heating-cooling energy and carbon footprint in under-researched Central Asia (CA). Under SSP2-4.5, icing and frost days reduce, while summer days and tropical nights increase. Central Asian countries will see an increase in cooling needs despite the projected decline in heating demands, with Kyrgyzstan experiencing the highest rise in cooling degree days, projected to increase by 132% and 165% in the near-future under SSP2-4.5 and SSP5-8.5, respectively. As a result, cooling energy generation is expected to rise by 39% and 92% under SSP2-4.5 and SSP5-8.5, respectively. However, CO2 emissions for cooling are much lower in Kyrgyzstan and Tajikistan due to their reliance on renewable energy. CO2 emissions in these countries are projected to be ≈10 times lower than in other parts of CA. From 2022 to 2100, cooling-related emissions are estimated to increase by 41% and 80% under SSP2-4.5 and SSP5-8.5, respectively across CA. Urgent adaptation is needed for resilient cities and stable power by expanding renewables, modernizing infrastructure, boosting efficiency, adopting policies, and fostering cooperation.