A New Mixed Biased Estimator for Ill-Conditioning Challenges in Linear Regression Model With Chemometrics Applications

IF 3 Q2 CHEMISTRY, ANALYTICAL
Muhammad Amin, Sadiah M. A. Aljeddani, Muhammad Nauman Akram, Sajida Yasmeen
{"title":"A New Mixed Biased Estimator for Ill-Conditioning Challenges in Linear Regression Model With Chemometrics Applications","authors":"Muhammad Amin,&nbsp;Sadiah M. A. Aljeddani,&nbsp;Muhammad Nauman Akram,&nbsp;Sajida Yasmeen","doi":"10.1002/ansa.70020","DOIUrl":null,"url":null,"abstract":"<p>In linear regression models, the ordinary least squares (OLS) method is used to estimate the unknown regression coefficients. However, the OLS estimator may provide unreliable estimates in non-orthogonal models. This article introduces a novel mixed-biased estimator to address the challenges posed by the non-orthogonal model. The proposed estimator is derived through a combination of two estimators, namely, the Stein and ridge estimators. The theoretical properties of the proposed estimator are discussed. Moreover, we suggest estimation methods to estimate the value of the shrinkage parameters for the proposed estimator. We compare the performance of the proposed estimator with the Stein estimator, the ridge estimator with standard and two best ridge parameters and the ordinary least square estimator. This evaluation is based on the mean squared error performance criterion, using both a simulation study and two practical applications related to cement and crock datasets. The simulation study and applications results show that the proposed estimator performs better than the other considered estimators.</p>","PeriodicalId":93411,"journal":{"name":"Analytical science advances","volume":"6 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.70020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ansa.70020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In linear regression models, the ordinary least squares (OLS) method is used to estimate the unknown regression coefficients. However, the OLS estimator may provide unreliable estimates in non-orthogonal models. This article introduces a novel mixed-biased estimator to address the challenges posed by the non-orthogonal model. The proposed estimator is derived through a combination of two estimators, namely, the Stein and ridge estimators. The theoretical properties of the proposed estimator are discussed. Moreover, we suggest estimation methods to estimate the value of the shrinkage parameters for the proposed estimator. We compare the performance of the proposed estimator with the Stein estimator, the ridge estimator with standard and two best ridge parameters and the ordinary least square estimator. This evaluation is based on the mean squared error performance criterion, using both a simulation study and two practical applications related to cement and crock datasets. The simulation study and applications results show that the proposed estimator performs better than the other considered estimators.

线性回归模型病态挑战的一种新的混合偏估计量及其化学计量学应用
在线性回归模型中,使用普通最小二乘(OLS)方法估计未知回归系数。然而,OLS估计器可能在非正交模型中提供不可靠的估计。本文引入了一种新的混合偏估计器来解决非正交模型带来的挑战。该估计量是通过Stein估计量和ridge估计量的组合得到的。讨论了所提估计量的理论性质。此外,我们提出了估计方法来估计所提出的估计器的收缩参数值。将该估计量与Stein估计量、标准岭估计量和两个最佳岭估计量以及普通最小二乘估计量的性能进行了比较。该评估基于均方误差性能标准,使用了模拟研究和两个与水泥和瓦罐数据集相关的实际应用。仿真研究和应用结果表明,该估计器的性能优于其他估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信