Efficient Nonenzymatic Electrochemical Detection of Glucose Using CuO Nanoparticles@CNT-Wrapped Graphene Oxide Composite Electrode

IF 3 Q2 CHEMISTRY, ANALYTICAL
Amina Khalid, Rizwan Shoukat, Abid Ali, Salih Akyürekli, Arfaa Sajid, Muhammad Adeel Asghar, Qaisar Manzoor, Arif Nazir, Norah Alsadun, Amel Y. Ahmed
{"title":"Efficient Nonenzymatic Electrochemical Detection of Glucose Using CuO Nanoparticles@CNT-Wrapped Graphene Oxide Composite Electrode","authors":"Amina Khalid,&nbsp;Rizwan Shoukat,&nbsp;Abid Ali,&nbsp;Salih Akyürekli,&nbsp;Arfaa Sajid,&nbsp;Muhammad Adeel Asghar,&nbsp;Qaisar Manzoor,&nbsp;Arif Nazir,&nbsp;Norah Alsadun,&nbsp;Amel Y. Ahmed","doi":"10.1002/ansa.70019","DOIUrl":null,"url":null,"abstract":"<p>A highly sensitive and stable nonenzymatic glucose biosensor has been developed via composite materials composed of CuO and graphene oxide (GO)/carbon nanotube (CNT) nanohybrid (CuO/GO/CNTs). Copper oxide nanoparticle(NP)-modified CNTs were stacked via graphene sheets and synthesized through hydrothermal method, providing a larger surface area with boosted catalytic activity for efficient mass and electron passage, respectively. Scanning electron microscopy (SEM) and energy-dispersive x-ray (EDX) spectroscopy have been used to investigate the morphology and composition of as-prepared nanohybrids, whereas x-ray diffraction (XRD) patterns provide information about the crystal structure and lattice parameters. Fabricated nanohybrid was used as electrode material to develop the nonenzymatic glucose biosensor, which exhibited better performance with a linear dynamic range from 0.06 to 0.74 mM, a high sensitivity of 328 mA mM<sup>−1</sup> cm<sup>−2</sup> and a low detection limit of up to 0.033 mM with a fast response time of 2 s. Although the stability and reusability of the fabricated electrode have been tested. The limit of detection was determined by using the traditional formula LOD = (SNR × <i>σ</i>)/Slope. The outcomes recommend the synthesized novel structured nanohybrid as a promising material possessing significant impact for flexible and wearable biosensing applications.</p>","PeriodicalId":93411,"journal":{"name":"Analytical science advances","volume":"6 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.70019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ansa.70019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A highly sensitive and stable nonenzymatic glucose biosensor has been developed via composite materials composed of CuO and graphene oxide (GO)/carbon nanotube (CNT) nanohybrid (CuO/GO/CNTs). Copper oxide nanoparticle(NP)-modified CNTs were stacked via graphene sheets and synthesized through hydrothermal method, providing a larger surface area with boosted catalytic activity for efficient mass and electron passage, respectively. Scanning electron microscopy (SEM) and energy-dispersive x-ray (EDX) spectroscopy have been used to investigate the morphology and composition of as-prepared nanohybrids, whereas x-ray diffraction (XRD) patterns provide information about the crystal structure and lattice parameters. Fabricated nanohybrid was used as electrode material to develop the nonenzymatic glucose biosensor, which exhibited better performance with a linear dynamic range from 0.06 to 0.74 mM, a high sensitivity of 328 mA mM−1 cm−2 and a low detection limit of up to 0.033 mM with a fast response time of 2 s. Although the stability and reusability of the fabricated electrode have been tested. The limit of detection was determined by using the traditional formula LOD = (SNR × σ)/Slope. The outcomes recommend the synthesized novel structured nanohybrid as a promising material possessing significant impact for flexible and wearable biosensing applications.

Abstract Image

利用CuO Nanoparticles@CNT-Wrapped氧化石墨烯复合电极高效非酶电化学检测葡萄糖
利用CuO和氧化石墨烯(GO)/碳纳米管(CNT)纳米杂化(CuO/GO/CNTs)复合材料,研制了一种高灵敏度、高稳定性的非酶促葡萄糖生物传感器。氧化铜纳米粒子(NP)修饰的碳纳米管在石墨烯片上堆叠,并通过水热法合成,提供了更大的表面积和提高的催化活性,分别为有效的质量和电子通过。扫描电子显微镜(SEM)和能量色散x射线(EDX)光谱研究了制备的纳米杂化物的形貌和组成,而x射线衍射(XRD)图谱提供了晶体结构和晶格参数的信息。以制备的纳米杂化物为电极材料,制备出了线性动态范围为0.06 ~ 0.74 mM、灵敏度为328 mA mM−1 cm−2、检测限为0.033 mM、快速响应时间为2 s的非酶促葡萄糖生物传感器。尽管已对所制备电极的稳定性和可重复使用性进行了测试。检出限采用传统公式LOD =(信噪比× σ)/斜率确定。结果表明,合成的新型结构纳米杂化材料对柔性和可穿戴生物传感应用具有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信