{"title":"Hydration and dehydration of CM chondrites revealed by X-ray diffraction combined with textural observations and compositional data","authors":"Naoya Imae, Makoto Kimura, Akira Yamaguchi","doi":"10.1111/maps.14348","DOIUrl":null,"url":null,"abstract":"<p>The in-plane rotation method is used to obtain X-ray random diffraction (XRD) patterns of polished thin sections of 10 CM chondrites. The samples include five intermediately altered CM chondrites with subtypes 2.6–2.3, two heavily altered CM chondrites with subtype 2.0 and three with secondary heating after hydration (Y 980036, Y 980051, and Jbilet Winselwan). These CM chondrites are compared to each other as well as four previously analyzed CM meteorites of subtypes 3.0–2.8 and 2.0. The same thin sections also underwent textural observations and compositional analyses. Unheated CM chondrites display systematic mineralogical changes. As the alteration degree increases from subtypes 3.0–2.0, the presence of olivine and clinoenstatite decreases, while that of serpentines increases. The abundance of tochilinite significantly increases from 2.7 to 2.3 but then decreases from 2.3 to 2.0. Subtype 2.0 consists of relatively more Mg-rich serpentine than Fe-rich serpentine (cronstedtite). The XRD identified only Mg-serpentine from Jbilet Winselwan, suggesting selective decomposition of Fe-rich serpentine (cronstedtite), while all hydrous minerals in Y 980036 and Y 980051 decomposed. Additionally, all three CM chondrites with secondary heating after hydration show stage II or category B heating by the peak metamorphic temperature of 300–750°C. Compared to previous studies using XRD, the combination of XRD with the textural and compositional analyses using the same polished thin section, avoiding the preparation for powder samples, is a straightforward approach to characterize hydrated chondritic samples. The approach is nondestructive and can be correlated with SEM/EPMA, unlike previous XRD studies that required powdered samples.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 5","pages":"1194-1215"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14348","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14348","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The in-plane rotation method is used to obtain X-ray random diffraction (XRD) patterns of polished thin sections of 10 CM chondrites. The samples include five intermediately altered CM chondrites with subtypes 2.6–2.3, two heavily altered CM chondrites with subtype 2.0 and three with secondary heating after hydration (Y 980036, Y 980051, and Jbilet Winselwan). These CM chondrites are compared to each other as well as four previously analyzed CM meteorites of subtypes 3.0–2.8 and 2.0. The same thin sections also underwent textural observations and compositional analyses. Unheated CM chondrites display systematic mineralogical changes. As the alteration degree increases from subtypes 3.0–2.0, the presence of olivine and clinoenstatite decreases, while that of serpentines increases. The abundance of tochilinite significantly increases from 2.7 to 2.3 but then decreases from 2.3 to 2.0. Subtype 2.0 consists of relatively more Mg-rich serpentine than Fe-rich serpentine (cronstedtite). The XRD identified only Mg-serpentine from Jbilet Winselwan, suggesting selective decomposition of Fe-rich serpentine (cronstedtite), while all hydrous minerals in Y 980036 and Y 980051 decomposed. Additionally, all three CM chondrites with secondary heating after hydration show stage II or category B heating by the peak metamorphic temperature of 300–750°C. Compared to previous studies using XRD, the combination of XRD with the textural and compositional analyses using the same polished thin section, avoiding the preparation for powder samples, is a straightforward approach to characterize hydrated chondritic samples. The approach is nondestructive and can be correlated with SEM/EPMA, unlike previous XRD studies that required powdered samples.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.