Local existence and nonexistence of fractional Rayleigh–Stokes equations with a superlinear source term

IF 0.8 3区 数学 Q2 MATHEMATICS
Yubin Liu, Li Peng
{"title":"Local existence and nonexistence of fractional Rayleigh–Stokes equations with a superlinear source term","authors":"Yubin Liu,&nbsp;Li Peng","doi":"10.1002/mana.12010","DOIUrl":null,"url":null,"abstract":"<p>Fractional Rayleigh–Stokes equations can be described as the viscoelasticity of non-Newtonian fluids behavior for a generalized second grade fluid. In this paper, we present the monotone iteration method to investigate the nonlinear fractional Rayleigh–Stokes equations from the perspective of the supersolution. More precisely, we analyze the local existence, boundedness, and convergence of nonnegative mild solutions under the superlinear growth conditions. Further, the local nonexistence results of mild solutions are also given.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1700-1712"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12010","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fractional Rayleigh–Stokes equations can be described as the viscoelasticity of non-Newtonian fluids behavior for a generalized second grade fluid. In this paper, we present the monotone iteration method to investigate the nonlinear fractional Rayleigh–Stokes equations from the perspective of the supersolution. More precisely, we analyze the local existence, boundedness, and convergence of nonnegative mild solutions under the superlinear growth conditions. Further, the local nonexistence results of mild solutions are also given.

具有超线性源项的分数阶Rayleigh-Stokes方程的局部存在性与不存在性
分数阶瑞利-斯托克斯方程可以描述为广义二级流体的非牛顿流体行为的粘弹性。本文从超解的角度出发,提出了非线性分数阶Rayleigh-Stokes方程的单调迭代方法。更确切地说,我们分析了在超线性增长条件下非负温和解的局部存在性、有界性和收敛性。进一步给出了温和解的局部不存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信