{"title":"Convergence of approximating solutions of the Navier–Stokes equations in higher ordered Sobolev norms","authors":"Yuta Koizumi","doi":"10.1002/mana.12009","DOIUrl":null,"url":null,"abstract":"<p>We show that the approximating solutions <span></span><math>\n <semantics>\n <msubsup>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>u</mi>\n <mi>j</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <mi>∞</mi>\n </msubsup>\n <annotation>$\\lbrace u_j\\rbrace _{j=0}^{\\infty }$</annotation>\n </semantics></math> of the Navier–Stokes equations constructed by Kato with the initial data <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <msubsup>\n <mi>L</mi>\n <mi>σ</mi>\n <mi>n</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$u(0) \\in L_{\\sigma }^{n}(\\mathbb {R}^{n})$</annotation>\n </semantics></math> converge to the local strong solution <span></span><math>\n <semantics>\n <mi>u</mi>\n <annotation>$u$</annotation>\n </semantics></math> in the topology of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{k,q}(\\mathbb {R}^n)$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$k \\in \\mathbb {N}$</annotation>\n </semantics></math> provided the convergence in the scaling invariant norm in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>q</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^q(\\mathbb {R}^n)$</annotation>\n </semantics></math> with the time weight holds. As an application of our convergence, it is clarified that the approximation of the pressure is established in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{k+1,q}(\\mathbb {R}^n)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1663-1679"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12009","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that the approximating solutions of the Navier–Stokes equations constructed by Kato with the initial data converge to the local strong solution in the topology of for all provided the convergence in the scaling invariant norm in with the time weight holds. As an application of our convergence, it is clarified that the approximation of the pressure is established in .
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index