Convergence of approximating solutions of the Navier–Stokes equations in higher ordered Sobolev norms

IF 0.8 3区 数学 Q2 MATHEMATICS
Yuta Koizumi
{"title":"Convergence of approximating solutions of the Navier–Stokes equations in higher ordered Sobolev norms","authors":"Yuta Koizumi","doi":"10.1002/mana.12009","DOIUrl":null,"url":null,"abstract":"<p>We show that the approximating solutions <span></span><math>\n <semantics>\n <msubsup>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>u</mi>\n <mi>j</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <mi>∞</mi>\n </msubsup>\n <annotation>$\\lbrace u_j\\rbrace _{j=0}^{\\infty }$</annotation>\n </semantics></math> of the Navier–Stokes equations constructed by Kato with the initial data <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <msubsup>\n <mi>L</mi>\n <mi>σ</mi>\n <mi>n</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$u(0) \\in L_{\\sigma }^{n}(\\mathbb {R}^{n})$</annotation>\n </semantics></math> converge to the local strong solution <span></span><math>\n <semantics>\n <mi>u</mi>\n <annotation>$u$</annotation>\n </semantics></math> in the topology of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{k,q}(\\mathbb {R}^n)$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$k \\in \\mathbb {N}$</annotation>\n </semantics></math> provided the convergence in the scaling invariant norm in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>q</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^q(\\mathbb {R}^n)$</annotation>\n </semantics></math> with the time weight holds. As an application of our convergence, it is clarified that the approximation of the pressure is established in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{k+1,q}(\\mathbb {R}^n)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1663-1679"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12009","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the approximating solutions { u j } j = 0 $\lbrace u_j\rbrace _{j=0}^{\infty }$ of the Navier–Stokes equations constructed by Kato with the initial data u ( 0 ) L σ n ( R n ) $u(0) \in L_{\sigma }^{n}(\mathbb {R}^{n})$ converge to the local strong solution u $u$ in the topology of W k , q ( R n ) $W^{k,q}(\mathbb {R}^n)$ for all k N $k \in \mathbb {N}$ provided the convergence in the scaling invariant norm in L q ( R n ) $L^q(\mathbb {R}^n)$ with the time weight holds. As an application of our convergence, it is clarified that the approximation of the pressure is established in W k + 1 , q ( R n ) $W^{k+1,q}(\mathbb {R}^n)$ .

高阶Sobolev范数下Navier-Stokes方程近似解的收敛性
我们证明了Kato用初始数据构造的Navier-Stokes方程的近似解{u j} j = 0∞$\lbrace u_j\rbrace _{j=0}^{\infty }$u(0)∈L σ n (rn) $u(0) \in L_{\sigma }^{n}(\mathbb {R}^{n})$收敛到W k拓扑中的局部强解u $u$,q (R n) $W^{k,q}(\mathbb {R}^n)$对于所有k∈n $k \in \mathbb {N}$提供了尺度不变范数的收敛性在lq (R n) $L^q(\mathbb {R}^n)$中,时间权值保持不变。作为我们收敛性的一个应用,可以清楚地看出压力的近似是在W k + 1中建立的,q (rn) $W^{k+1,q}(\mathbb {R}^n)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信