{"title":"Physics-Informed Deep Learning for Estimating the Spatial Distribution of Frictional Parameters in Slow Slip Regions","authors":"Rikuto Fukushima, Masayuki Kano, Kazuro Hirahara, Makiko Ohtani, Kyungjae Im, Jean-Philippe Avouac","doi":"10.1029/2024JB030256","DOIUrl":null,"url":null,"abstract":"<p>Slow slip events (SSEs) have been observed in many subduction zones and are understood to result from frictional unstable slip on the plate interface. The diversity of their characteristics and the fact that interplate slip can also be seismic suggest that frictional properties are heterogeneous. We are however lacking methods to determine spatial variations of frictional properties. In this paper, we employ a Physics-Informed Neural Network (PINN) to achieve this goal using a synthetic model inspired by the long-term SSEs observed in the Bungo channel. PINN is a deep learning technique that can be used to solve the differential equations representing the physics of the problem and determine the model parameters from observations. We start with an idealized case where it is assumed that fault slip is directly observed. We next move to a more realistic case where the observations consist of synthetic surface displacement velocity data measured by virtual GNSS stations. We find that the geometry and friction properties of the velocity weakening region, where the slip instability develops, are well estimated, especially if surface displacement velocity above the velocity weakening region is observed. Our PINN-based method can be seen as an inversion technique with the regularization constraint that fault slip obeys a particular friction law. This approach remediates the issue that standard regularization techniques are based on non-physical constraints. Our results show that the PINN-based method is a promising approach for estimating the spatial distribution of friction parameters from GNSS observations.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030256","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030256","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Slow slip events (SSEs) have been observed in many subduction zones and are understood to result from frictional unstable slip on the plate interface. The diversity of their characteristics and the fact that interplate slip can also be seismic suggest that frictional properties are heterogeneous. We are however lacking methods to determine spatial variations of frictional properties. In this paper, we employ a Physics-Informed Neural Network (PINN) to achieve this goal using a synthetic model inspired by the long-term SSEs observed in the Bungo channel. PINN is a deep learning technique that can be used to solve the differential equations representing the physics of the problem and determine the model parameters from observations. We start with an idealized case where it is assumed that fault slip is directly observed. We next move to a more realistic case where the observations consist of synthetic surface displacement velocity data measured by virtual GNSS stations. We find that the geometry and friction properties of the velocity weakening region, where the slip instability develops, are well estimated, especially if surface displacement velocity above the velocity weakening region is observed. Our PINN-based method can be seen as an inversion technique with the regularization constraint that fault slip obeys a particular friction law. This approach remediates the issue that standard regularization techniques are based on non-physical constraints. Our results show that the PINN-based method is a promising approach for estimating the spatial distribution of friction parameters from GNSS observations.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.