Daniela Arredondo, Sofia Grecco, Yanina Panzera, Pablo Zunino, Karina Antúnez
{"title":"Honey Bee Viromes From Varroa destructor-Resistant and Susceptible Colonies","authors":"Daniela Arredondo, Sofia Grecco, Yanina Panzera, Pablo Zunino, Karina Antúnez","doi":"10.1111/1758-2229.70097","DOIUrl":null,"url":null,"abstract":"<p>Honey bees (<i>Apis mellifera</i>) play a crucial role in global food production through pollination services. However, their populations are threatened by various stressors, like the ectoparasitic mite <i>Varroa destructor</i> and associated viral pathogens. In this study, we aimed to characterise and compare the viral communities (viromes) in <i>V. destructor</i>-resistant and susceptible colonies using high-throughput sequencing. Our findings revealed differences in virome composition associated with the season and not with the resistance or susceptibility to <i>V. destructor</i>. Furthermore, we detected <i>Apis mellifera</i> filamentous virus (AmFV) and Lake Sinai virus (LSV) for the first time in Uruguay, and obtained the complete or partial genomes of both viruses, along with those of other previously described viruses, such as Acute bee paralysis virus (ABPV), Black queen cell virus (BQCV), Deformed wing virus (DWV), and Sacbrood virus (SBV). This study contributes to a deeper understanding of the virome dynamics in honey bees. It highlights the importance of this type of study for the early detection of new viral pathogens, which could help to understand the tripartite network involving <i>V. destructor</i>, honey bees, and viruses.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70097","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70097","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Honey bees (Apis mellifera) play a crucial role in global food production through pollination services. However, their populations are threatened by various stressors, like the ectoparasitic mite Varroa destructor and associated viral pathogens. In this study, we aimed to characterise and compare the viral communities (viromes) in V. destructor-resistant and susceptible colonies using high-throughput sequencing. Our findings revealed differences in virome composition associated with the season and not with the resistance or susceptibility to V. destructor. Furthermore, we detected Apis mellifera filamentous virus (AmFV) and Lake Sinai virus (LSV) for the first time in Uruguay, and obtained the complete or partial genomes of both viruses, along with those of other previously described viruses, such as Acute bee paralysis virus (ABPV), Black queen cell virus (BQCV), Deformed wing virus (DWV), and Sacbrood virus (SBV). This study contributes to a deeper understanding of the virome dynamics in honey bees. It highlights the importance of this type of study for the early detection of new viral pathogens, which could help to understand the tripartite network involving V. destructor, honey bees, and viruses.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.