Global regularity for p(x)-Laplace equations with log-BMO matrix weights in Reifenberg domains

IF 1 3区 数学 Q1 MATHEMATICS
Sun-Sig Byun, Rui Yang
{"title":"Global regularity for p(x)-Laplace equations with log-BMO matrix weights in Reifenberg domains","authors":"Sun-Sig Byun,&nbsp;Rui Yang","doi":"10.1007/s10231-024-01526-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study the boundary-value problem </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} \\mathrm {{div}}\\left( |\\mathbb {M}(x)\\nabla u(x)|^{p(x)-2}\\mathbb {M}^2(x)\\nabla u(x)\\right) =\\mathrm {{div}}\\left( |\\mathbb {M}(x) F(x)|^{p(x)-2}\\mathbb {M}^2(x)F(x)\\right) &amp; ~ \\text {in}~\\Omega ,\\\\ u(x)=0&amp; \\text {on}~\\partial \\Omega , \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>which has a degeneracy or singularity arising from the nonnegative matrix weight <span>\\(\\mathbb {M}(x)\\)</span>. A global Calderón-Zygmund estimate for the relative weight is established under minimal regularity requirements on the associated operator by proving that <span>\\( |\\nabla u(x)|^{p(x)}\\)</span> is as integrable as <span>\\( |F(x)|^{p(x)}\\)</span> in <span>\\(L^{\\gamma }\\left( \\Omega , |\\mathbb {M}(x)|^{ \\gamma p(x) }dx\\right) \\)</span> for every <span>\\(1&lt;\\gamma &lt;\\infty \\)</span>, under the assumptions that the variable exponent <i>p</i>(<i>x</i>) has a small log-Hölder constant, <span>\\(\\mathbb {M}(x)\\)</span> has a small log-BMO semi-norm and that the boundary <span>\\(\\partial \\Omega \\)</span> of the nonsmooth bounded domain <span>\\(\\Omega \\)</span> is flat in the Reifenberg sense. Our work is a natural extension and outgrowth of the uniformly elliptic problem when the matrix <span>\\(\\mathbb {M}(x)\\)</span> is a constant matrix as in [1, 7] to the degenerate or singular one when a coefficient of the nonlinearity might goes to zero or <span>\\(\\infty \\)</span>.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 3","pages":"1229 - 1267"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01526-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the boundary-value problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \mathrm {{div}}\left( |\mathbb {M}(x)\nabla u(x)|^{p(x)-2}\mathbb {M}^2(x)\nabla u(x)\right) =\mathrm {{div}}\left( |\mathbb {M}(x) F(x)|^{p(x)-2}\mathbb {M}^2(x)F(x)\right) & ~ \text {in}~\Omega ,\\ u(x)=0& \text {on}~\partial \Omega , \end{array}\right. } \end{aligned}$$

which has a degeneracy or singularity arising from the nonnegative matrix weight \(\mathbb {M}(x)\). A global Calderón-Zygmund estimate for the relative weight is established under minimal regularity requirements on the associated operator by proving that \( |\nabla u(x)|^{p(x)}\) is as integrable as \( |F(x)|^{p(x)}\) in \(L^{\gamma }\left( \Omega , |\mathbb {M}(x)|^{ \gamma p(x) }dx\right) \) for every \(1<\gamma <\infty \), under the assumptions that the variable exponent p(x) has a small log-Hölder constant, \(\mathbb {M}(x)\) has a small log-BMO semi-norm and that the boundary \(\partial \Omega \) of the nonsmooth bounded domain \(\Omega \) is flat in the Reifenberg sense. Our work is a natural extension and outgrowth of the uniformly elliptic problem when the matrix \(\mathbb {M}(x)\) is a constant matrix as in [1, 7] to the degenerate or singular one when a coefficient of the nonlinearity might goes to zero or \(\infty \).

Reifenberg域中log-BMO矩阵权值p(x)-Laplace方程的全局正则性
研究了由非负矩阵权\(\mathbb {M}(x)\)引起的具有退化性或奇异性的边值问题$$\begin{aligned} {\left\{ \begin{array}{ll} \mathrm {{div}}\left( |\mathbb {M}(x)\nabla u(x)|^{p(x)-2}\mathbb {M}^2(x)\nabla u(x)\right) =\mathrm {{div}}\left( |\mathbb {M}(x) F(x)|^{p(x)-2}\mathbb {M}^2(x)F(x)\right) & ~ \text {in}~\Omega ,\\ u(x)=0& \text {on}~\partial \Omega , \end{array}\right. } \end{aligned}$$。在假设变量指数p(x)有一个小的log-Hölder常数的情况下,通过证明\( |\nabla u(x)|^{p(x)}\)对于每个\(1<\gamma <\infty \)都与\(L^{\gamma }\left( \Omega , |\mathbb {M}(x)|^{ \gamma p(x) }dx\right) \)中的\( |F(x)|^{p(x)}\)一样可积,在相关算子的最小正则性要求下,建立了相对权重的全局Calderón-Zygmund估计。\(\mathbb {M}(x)\)有一个小的log-BMO半范数,非光滑有界域\(\Omega \)的边界\(\partial \Omega \)在Reifenberg意义上是平坦的。我们的工作是当矩阵\(\mathbb {M}(x)\)为常数矩阵(如[1,7])时的一致椭圆问题到非线性系数可能趋近于零或\(\infty \)时的退化或奇异矩阵的自然推广和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信