The limit as \(s\nearrow 1\) of the fractional convex envelope

IF 1 3区 数学 Q1 MATHEMATICS
Begoña Barrios, Leandro M. Del Pezzo, Alexander Quaas, Julio D. Rossi
{"title":"The limit as \\(s\\nearrow 1\\) of the fractional convex envelope","authors":"Begoña Barrios,&nbsp;Leandro M. Del Pezzo,&nbsp;Alexander Quaas,&nbsp;Julio D. Rossi","doi":"10.1007/s10231-024-01522-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study the behavior of the fractional convexity when the fractional parameter goes to 1. For any notion of convexity, the convex envelope of a datum prescribed on the boundary of a domain is defined as the largest possible convex function inside the domain that is below the datum on the boundary. Here we prove that the fractional convex envelope inside a strictly convex domain of a continuous and bounded exterior datum converges when <span>\\(s\\nearrow 1\\)</span> to the classical convex envelope of the restriction to the boundary of the exterior datum.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 3","pages":"1147 - 1160"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01522-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the behavior of the fractional convexity when the fractional parameter goes to 1. For any notion of convexity, the convex envelope of a datum prescribed on the boundary of a domain is defined as the largest possible convex function inside the domain that is below the datum on the boundary. Here we prove that the fractional convex envelope inside a strictly convex domain of a continuous and bounded exterior datum converges when \(s\nearrow 1\) to the classical convex envelope of the restriction to the boundary of the exterior datum.

分数阶凸包络的极限为\(s\nearrow 1\)
研究分数阶参数趋于1时分数阶凸性的行为。对于任何凸性的概念,指定在边界上的基准的凸包络被定义为在边界上的基准以下的域内最大可能的凸函数。本文证明了连续有界外基准严格凸域内分数阶凸包络在\(s\nearrow 1\)收敛于外基准边界限制的经典凸包络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信