Profinite bi-Heyting algebras

IF 0.6 4区 数学 Q3 MATHEMATICS
Lydia Tasiou
{"title":"Profinite bi-Heyting algebras","authors":"Lydia Tasiou","doi":"10.1007/s00012-025-00892-w","DOIUrl":null,"url":null,"abstract":"<div><p>A poset <span>\\({\\mathbb {X}}\\)</span> is said to be zigzag image-finite, if the least updownset (i.e., both an upset and a downset) containing <i>x</i> is finite, for all <span>\\(x\\in X.\\)</span> We show that a bi-Heyting algebra is profinite if and only if it is isomorphic to the lattice of upsets of a zigzag image-finite poset. Zigzag image-finite posets have the property of being disjoint unions of finite connected posets. Because of this, we equivalently show that a bi-Heyting algebra is profinite if and only if it is isomorphic to a direct product of simple finite bi-Heyting algebras.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"86 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-025-00892-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-025-00892-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A poset \({\mathbb {X}}\) is said to be zigzag image-finite, if the least updownset (i.e., both an upset and a downset) containing x is finite, for all \(x\in X.\) We show that a bi-Heyting algebra is profinite if and only if it is isomorphic to the lattice of upsets of a zigzag image-finite poset. Zigzag image-finite posets have the property of being disjoint unions of finite connected posets. Because of this, we equivalently show that a bi-Heyting algebra is profinite if and only if it is isomorphic to a direct product of simple finite bi-Heyting algebras.

无限双heyting代数
如果包含x的最小逆集(即逆集和逆集)是有限的,那么我们说一个偏集\({\mathbb {X}}\)是之字形像有限的,对于所有\(x\in X.\)我们证明了一个双heyting代数是无限的当且仅当它与一个之字形像有限偏集的逆集的格同构。之字形像有限序集具有有限连通序集的不相交并的性质。因此,我们等价地证明了一个双heyting代数是无限的当且仅当它同构于简单有限双heyting代数的直积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信