Quantitative analysis of sheared unsaturated wet granular materials using X-ray micro-tomography and advanced segmentation techniques

IF 2.4 3区 工程技术
Ahmad Awdi, Camille Chateau, Abdoulaye Fall, Jean-Noël Roux, Patrick Aimedieu
{"title":"Quantitative analysis of sheared unsaturated wet granular materials using X-ray micro-tomography and advanced segmentation techniques","authors":"Ahmad Awdi,&nbsp;Camille Chateau,&nbsp;Abdoulaye Fall,&nbsp;Jean-Noël Roux,&nbsp;Patrick Aimedieu","doi":"10.1007/s10035-025-01518-7","DOIUrl":null,"url":null,"abstract":"<div><p>The microstructure of sheared unsaturated wet granular materials, comprising solid particles, liquid phases, and void spaces, is explored using X-ray micro-tomography. Advanced segmentation techniques are employed to overcome challenges in distinguishing phases within the material, utilizing a combination of Random Forest and U-Net models for accurate segmentation of the X-ray images. This methodology enables the quantification of the solid and liquid fractions within the sample, revealing the effects of shear deformation on their distribution. Additionally, an automated tool is designed to characterize the local geometry of small liquid domains, classified according to the number of connected liquid bridges joining grain pairs and the shape of such clusters. It is shown that deformation redistributes the liquid phase, which tends to be excluded from the strongly sheared regions. Coordination number estimates agree with published numerical simulation results. The study also addresses some limitations related to voxel size. The robust tools to analyse complex three-phase microstructure of wet granular materials are expected to improve the modeling of their rheology under different conditions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p> \"Exploring the microstructure of sheared unsaturated wet granular materials using X-ray micro-tomography. Advanced segmentation with Random Forest and U-Net models enables quantitative analysis of liquid morphologies, after automatic classification, and their evolution under shear, revealing redistribution patterns and coordination changes</p></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-025-01518-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01518-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The microstructure of sheared unsaturated wet granular materials, comprising solid particles, liquid phases, and void spaces, is explored using X-ray micro-tomography. Advanced segmentation techniques are employed to overcome challenges in distinguishing phases within the material, utilizing a combination of Random Forest and U-Net models for accurate segmentation of the X-ray images. This methodology enables the quantification of the solid and liquid fractions within the sample, revealing the effects of shear deformation on their distribution. Additionally, an automated tool is designed to characterize the local geometry of small liquid domains, classified according to the number of connected liquid bridges joining grain pairs and the shape of such clusters. It is shown that deformation redistributes the liquid phase, which tends to be excluded from the strongly sheared regions. Coordination number estimates agree with published numerical simulation results. The study also addresses some limitations related to voxel size. The robust tools to analyse complex three-phase microstructure of wet granular materials are expected to improve the modeling of their rheology under different conditions.

Graphical Abstract

"Exploring the microstructure of sheared unsaturated wet granular materials using X-ray micro-tomography. Advanced segmentation with Random Forest and U-Net models enables quantitative analysis of liquid morphologies, after automatic classification, and their evolution under shear, revealing redistribution patterns and coordination changes

利用x射线微断层扫描和先进的分割技术定量分析剪切不饱和湿颗粒材料
剪切非饱和湿颗粒材料的微观结构,包括固体颗粒,液相和空隙空间,探索了x射线显微断层扫描。采用先进的分割技术来克服在材料中区分阶段的挑战,利用随机森林和U-Net模型的组合来精确分割x射线图像。这种方法可以量化样品中的固体和液体组分,揭示剪切变形对其分布的影响。此外,设计了一个自动化工具来表征小液体域的局部几何形状,根据连接颗粒对的连接液体桥的数量和此类簇的形状进行分类。结果表明,变形使液相重新分布,使液相被排除在强剪切区之外。配位数估计与已发表的数值模拟结果一致。该研究还解决了与体素大小有关的一些限制。分析湿颗粒材料复杂三相微观结构的强大工具有望改善其在不同条件下流变学的建模。图解摘要“利用x射线显微断层扫描技术探索剪切非饱和湿颗粒材料的微观结构。利用Random Forest和U-Net模型进行高级分割,可以定量分析自动分类后的液体形态及其在剪切作用下的演变,揭示再分布模式和协调变化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信