Asymptotic behavior of fractional Musielak–Orlicz–Sobolev modulars without the \(\Delta _2\)-condition

IF 1 3区 数学 Q1 MATHEMATICS
J. C. de Albuquerque, L. R. S. de Assis, M. L. M. Carvalho, A. Salort
{"title":"Asymptotic behavior of fractional Musielak–Orlicz–Sobolev modulars without the \\(\\Delta _2\\)-condition","authors":"J. C. de Albuquerque,&nbsp;L. R. S. de Assis,&nbsp;M. L. M. Carvalho,&nbsp;A. Salort","doi":"10.1007/s10231-024-01515-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the asymptotic behavior of anisotropic nonlocal nonstandard growth seminorms and modulars as the fractional parameter goes to 1 without requiring the <span>\\(\\Delta _2\\)</span>-condition on the generalized Young function or its complementary function. This provides a so-called Bourgain-Brezis-Mironescu type formula for a very general family of functionals. In the particular case of fractional Sobolev spaces with variable exponent, we point out that our proof asks for a weaker regularity of the exponent than the considered in previous articles.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 3","pages":"983 - 1002"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01515-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the asymptotic behavior of anisotropic nonlocal nonstandard growth seminorms and modulars as the fractional parameter goes to 1 without requiring the \(\Delta _2\)-condition on the generalized Young function or its complementary function. This provides a so-called Bourgain-Brezis-Mironescu type formula for a very general family of functionals. In the particular case of fractional Sobolev spaces with variable exponent, we point out that our proof asks for a weaker regularity of the exponent than the considered in previous articles.

无\(\Delta _2\) -条件下分数阶Musielak-Orlicz-Sobolev模的渐近行为
本文研究了各向异性非局部非标准生长半模和模在分数参数趋近于1时的渐近行为,而不需要广义Young函数及其补函数的\(\Delta _2\) -条件。这为非常一般的泛函族提供了所谓的Bourgain-Brezis-Mironescu型公式。在变指数分数Sobolev空间的特殊情况下,我们指出我们的证明要求指数的正则性比前面文章所考虑的要弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信