Nowcasting earthquakes in the Philippines archipelago

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Sonu Devi, Sumanta Pasari
{"title":"Nowcasting earthquakes in the Philippines archipelago","authors":"Sonu Devi,&nbsp;Sumanta Pasari","doi":"10.1007/s10950-024-10277-6","DOIUrl":null,"url":null,"abstract":"<div><p>The continuous occurrence of destructive earthquakes in the Philippine Archipelago, generated by both mapped and unmapped faults, highlights the shortcomings of traditional fault-based hazard assessment techniques. The earthquakes caused by unmapped faults, in particular, emphasize the necessity of adopting area-based hazard evaluation approaches. In view of this, the present study implements an area–based earthquake nowcasting approach to statistically compute the current level of seismic hazards in 26 densely populated cities across Philippines. We utilize the concept of natural time, the inter–event counts of small earthquakes occurring between successive large earthquakes, to calculate Earthquake Potential Score (EPS) for the defined city regions. To derive the natural time statistics, we incorporate a diverse range of reference probability distributions, including heavy–tailed, time–dependent, time–independent, and exponentiated group of distributions. Statistical inference for observed natural times reveals that (1) the Weibull distribution provides the best representation; (2) as on August 15, 2024, the EPS values (%), corresponding to M <span>\\(\\ge \\)</span> 6.5 earthquakes for 26 cities range from 09% to 71%, with Tacloban (71%), Cagayan de Oro (69%), Dasmarinas (64%), Bacoor (63%), Las Pinas (63%), Manila (62%), Paranaque (61%), Taguig (60%), Valenzuela (60%), Makati (60%), Quezon City (58%), Pasig (58%), Caloocan (56%), Antipolo (55%), Marawi (55%), Zamboanga (54%), San Jose Del Monte (53%), Legazpi (44%), Cebu (39%), San Carlos (31%), Bacolod (28%), General Santos (27%), and Davao (09%), and (3) the nowcast scores are consistent despite some variations in threshold magnitude and city regions. These EPS values provide a unique measure to determine the ongoing progression of the earthquake cycle of large sized events of the target regions, enabling a consistent city ranking based on their current level of seismic progression. The nowcasting approach and emanated results offer valuable insights for informed decision–making to enhance preparedness and risk management strategies across the Philippine Archipelago.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":"29 2","pages":"505 - 524"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10277-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The continuous occurrence of destructive earthquakes in the Philippine Archipelago, generated by both mapped and unmapped faults, highlights the shortcomings of traditional fault-based hazard assessment techniques. The earthquakes caused by unmapped faults, in particular, emphasize the necessity of adopting area-based hazard evaluation approaches. In view of this, the present study implements an area–based earthquake nowcasting approach to statistically compute the current level of seismic hazards in 26 densely populated cities across Philippines. We utilize the concept of natural time, the inter–event counts of small earthquakes occurring between successive large earthquakes, to calculate Earthquake Potential Score (EPS) for the defined city regions. To derive the natural time statistics, we incorporate a diverse range of reference probability distributions, including heavy–tailed, time–dependent, time–independent, and exponentiated group of distributions. Statistical inference for observed natural times reveals that (1) the Weibull distribution provides the best representation; (2) as on August 15, 2024, the EPS values (%), corresponding to M \(\ge \) 6.5 earthquakes for 26 cities range from 09% to 71%, with Tacloban (71%), Cagayan de Oro (69%), Dasmarinas (64%), Bacoor (63%), Las Pinas (63%), Manila (62%), Paranaque (61%), Taguig (60%), Valenzuela (60%), Makati (60%), Quezon City (58%), Pasig (58%), Caloocan (56%), Antipolo (55%), Marawi (55%), Zamboanga (54%), San Jose Del Monte (53%), Legazpi (44%), Cebu (39%), San Carlos (31%), Bacolod (28%), General Santos (27%), and Davao (09%), and (3) the nowcast scores are consistent despite some variations in threshold magnitude and city regions. These EPS values provide a unique measure to determine the ongoing progression of the earthquake cycle of large sized events of the target regions, enabling a consistent city ranking based on their current level of seismic progression. The nowcasting approach and emanated results offer valuable insights for informed decision–making to enhance preparedness and risk management strategies across the Philippine Archipelago.

菲律宾群岛临近地震
菲律宾群岛连续发生的破坏性地震是由已测绘和未测绘的断层引起的,这突出了传统的基于断层的灾害评估技术的缺点。特别是由未测绘断层引起的地震,强调了采用基于区域的灾害评价方法的必要性。鉴于此,本研究实施了一种基于区域的地震临近预报方法,以统计计算菲律宾26个人口稠密城市的地震危险度。我们利用自然时间的概念,即连续大地震之间发生的小地震的事件间计数,来计算所定义的城市区域的地震潜在评分(EPS)。为了获得自然时间统计,我们结合了各种参考概率分布,包括重尾分布、时间相关分布、时间无关分布和指数组分布。对观测到的自然时间的统计推断表明:(1)威布尔分布具有最好的代表性;(2)截至2024年8月15日,每股收益值(%), corresponding to M \(\ge \) 6.5 earthquakes for 26 cities range from 09% to 71%, with Tacloban (71%), Cagayan de Oro (69%), Dasmarinas (64%), Bacoor (63%), Las Pinas (63%), Manila (62%), Paranaque (61%), Taguig (60%), Valenzuela (60%), Makati (60%), Quezon City (58%), Pasig (58%), Caloocan (56%), Antipolo (55%), Marawi (55%), Zamboanga (54%), San Jose Del Monte (53%), Legazpi (44%), Cebu (39%), San Carlos (31%), Bacolod (28%), General Santos (27%), and Davao (09%), and (3) the nowcast scores are consistent despite some variations in threshold magnitude and city regions. These EPS values provide a unique measure to determine the ongoing progression of the earthquake cycle of large sized events of the target regions, enabling a consistent city ranking based on their current level of seismic progression. The nowcasting approach and emanated results offer valuable insights for informed decision–making to enhance preparedness and risk management strategies across the Philippine Archipelago.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信