Bergman projection induced by radial weight acting on growth spaces

IF 1 3区 数学 Q1 MATHEMATICS
Álvaro Miguel Moreno, José Ángel Peláez, Jari Taskinen
{"title":"Bergman projection induced by radial weight acting on growth spaces","authors":"Álvaro Miguel Moreno,&nbsp;José Ángel Peláez,&nbsp;Jari Taskinen","doi":"10.1007/s10231-024-01518-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\omega \\)</span> be a radial weight on the unit disc of the complex plane <span>\\(\\mathbb {D}\\)</span> and denote by <span>\\(\\widehat{\\omega }(r)=\\int _r^1 \\omega (s)\\,ds\\)</span> the tail integrals. A radial weight <span>\\(\\omega \\)</span> belongs to the class <span>\\(\\widehat{\\mathcal {D}}\\)</span> if satisfies the upper doubling condition </p><div><div><span>$$\\begin{aligned} \\sup _{0&lt;r&lt;1}\\frac{\\widehat{\\omega }(r)}{\\widehat{\\omega }\\left( \\frac{1+r}{2}\\right) }&lt;\\infty . \\end{aligned}$$</span></div></div><p>If <span>\\(\\nu \\)</span> or <span>\\(\\omega \\)</span> belongs to <span>\\(\\widehat{\\mathcal {D}}\\)</span>, we describe the boundedness of the Bergman projection <span>\\(P_\\omega \\)</span> induced by <span>\\(\\omega \\)</span> on the growth space <span>\\(L^\\infty _{\\widehat{\\nu }} =\\{ f: \\Vert f\\Vert _{\\infty ,v}=\\text {ess sup}_{z\\in \\mathbb {D}} |f(z)|\\widehat{\\nu }(z)&lt;\\infty \\}\\)</span> in terms of neat conditions on the moments and/or the tail integrals of <span>\\(\\omega \\)</span> and <span>\\(\\nu \\)</span>. Moreover, we solve the analogous problem for <span>\\(P_\\omega \\)</span> from <span>\\(L^\\infty _{\\widehat{\\nu }}\\)</span> to the Bloch type space <span>\\(\\mathcal {B}^\\infty _{\\widehat{\\nu }} = \\{f\\, \\text {analytic in} \\mathbb {D}: \\Vert f\\Vert _{\\mathcal {B}^\\infty _{\\widehat{\\nu }}} \\)</span> <span>\\(= \\sup _{z\\in \\mathbb {D}}(1-|z|)\\widehat{\\nu }(z)|f'(z)|&lt;\\infty \\}.\\)</span> Similar questions for exponentially decreasing radial weights will also be studied.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 3","pages":"1053 - 1073"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01518-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01518-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\omega \) be a radial weight on the unit disc of the complex plane \(\mathbb {D}\) and denote by \(\widehat{\omega }(r)=\int _r^1 \omega (s)\,ds\) the tail integrals. A radial weight \(\omega \) belongs to the class \(\widehat{\mathcal {D}}\) if satisfies the upper doubling condition

$$\begin{aligned} \sup _{0<r<1}\frac{\widehat{\omega }(r)}{\widehat{\omega }\left( \frac{1+r}{2}\right) }<\infty . \end{aligned}$$

If \(\nu \) or \(\omega \) belongs to \(\widehat{\mathcal {D}}\), we describe the boundedness of the Bergman projection \(P_\omega \) induced by \(\omega \) on the growth space \(L^\infty _{\widehat{\nu }} =\{ f: \Vert f\Vert _{\infty ,v}=\text {ess sup}_{z\in \mathbb {D}} |f(z)|\widehat{\nu }(z)<\infty \}\) in terms of neat conditions on the moments and/or the tail integrals of \(\omega \) and \(\nu \). Moreover, we solve the analogous problem for \(P_\omega \) from \(L^\infty _{\widehat{\nu }}\) to the Bloch type space \(\mathcal {B}^\infty _{\widehat{\nu }} = \{f\, \text {analytic in} \mathbb {D}: \Vert f\Vert _{\mathcal {B}^\infty _{\widehat{\nu }}} \) \(= \sup _{z\in \mathbb {D}}(1-|z|)\widehat{\nu }(z)|f'(z)|<\infty \}.\) Similar questions for exponentially decreasing radial weights will also be studied.

由作用于生长空间的径向权引起的伯格曼投影
让 \(\omega \) 是复平面单位圆盘上的径向重量 \(\mathbb {D}\) 用 \(\widehat{\omega }(r)=\int _r^1 \omega (s)\,ds\) 尾部积分。径向重量 \(\omega \) 属于班级 \(\widehat{\mathcal {D}}\) 如果满足上加倍条件 $$\begin{aligned} \sup _{0<r<1}\frac{\widehat{\omega }(r)}{\widehat{\omega }\left( \frac{1+r}{2}\right) }<\infty . \end{aligned}$$如果 \(\nu \) 或 \(\omega \) 属于 \(\widehat{\mathcal {D}}\),我们描述了Bergman投影的有界性 \(P_\omega \) 诱发的 \(\omega \) 关于成长空间 \(L^\infty _{\widehat{\nu }} =\{ f: \Vert f\Vert _{\infty ,v}=\text {ess sup}_{z\in \mathbb {D}} |f(z)|\widehat{\nu }(z)<\infty \}\) 关于矩和/或尾部积分的整洁条件 \(\omega \) 和 \(\nu \)。此外,我们还解决了类似的问题 \(P_\omega \) 从 \(L^\infty _{\widehat{\nu }}\) 到布洛赫字体空间 \(\mathcal {B}^\infty _{\widehat{\nu }} = \{f\, \text {analytic in} \mathbb {D}: \Vert f\Vert _{\mathcal {B}^\infty _{\widehat{\nu }}} \) \(= \sup _{z\in \mathbb {D}}(1-|z|)\widehat{\nu }(z)|f'(z)|<\infty \}.\) 我们还将研究径向权重指数递减的类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信