Sequential Model Predictive Torque Control for Six-Phase Machines Without Weighting Factors

IF 5 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jorge Rodas;Osvaldo Gonzalez;Paola Maidana;Christian Medina;Jesús Doval-Gandoy;Margarita Norambuena;Magno Ayala;Jose Rodriguez
{"title":"Sequential Model Predictive Torque Control for Six-Phase Machines Without Weighting Factors","authors":"Jorge Rodas;Osvaldo Gonzalez;Paola Maidana;Christian Medina;Jesús Doval-Gandoy;Margarita Norambuena;Magno Ayala;Jose Rodriguez","doi":"10.1109/OJPEL.2025.3563134","DOIUrl":null,"url":null,"abstract":"Model predictive control has become a powerful and versatile control strategy, particularly effective in controlling multiphase machines. One of its key advantages is the ability to address multiple control objectives by incorporating constraints directly into the cost function. However, this feature typically necessitates the challenging task of tuning weighting factors to balance competing objectives effectively. This paper proposes a sequential model predictive torque control strategy for six-phase induction machines, eliminating the need for weighting factors. The proposed approach simplifies the control design process while maintaining high performance. Simulation and experimental results demonstrate the method's effectiveness, showing accurate torque, flux tracking, and appropriate stator currents regulation in the <inline-formula><tex-math>$\\alpha -\\beta$</tex-math></inline-formula> and <inline-formula><tex-math>$x-y$</tex-math></inline-formula> planes. These results highlight the potential of the proposed control strategy for practical implementation in advanced multiphase drive systems.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"802-810"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10971946","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10971946/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Model predictive control has become a powerful and versatile control strategy, particularly effective in controlling multiphase machines. One of its key advantages is the ability to address multiple control objectives by incorporating constraints directly into the cost function. However, this feature typically necessitates the challenging task of tuning weighting factors to balance competing objectives effectively. This paper proposes a sequential model predictive torque control strategy for six-phase induction machines, eliminating the need for weighting factors. The proposed approach simplifies the control design process while maintaining high performance. Simulation and experimental results demonstrate the method's effectiveness, showing accurate torque, flux tracking, and appropriate stator currents regulation in the $\alpha -\beta$ and $x-y$ planes. These results highlight the potential of the proposed control strategy for practical implementation in advanced multiphase drive systems.
无权重因素的六相电机序贯模型预测转矩控制
模型预测控制已成为一种强大而通用的控制策略,在控制多相电机方面尤为有效。它的主要优点之一是能够通过将约束直接合并到成本函数中来处理多个控制目标。然而,这个特性通常需要调整权重因素以有效地平衡竞争目标这一具有挑战性的任务。本文提出了一种六相感应电机顺序模型预测转矩控制策略,消除了对权重因素的需要。该方法在保持高性能的同时简化了控制设计过程。仿真和实验结果验证了该方法的有效性,在$\alpha -\beta$和$x-y$平面上实现了准确的转矩、磁链跟踪和适当的定子电流调节。这些结果突出了所提出的控制策略在先进多相驱动系统中实际实施的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信