TRHyper: Low-Complexity Hypernetwork for Channel Neural Decoding With Learning Weights in Tensor Ring Format

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Yuanhui Liang;Chan-Tong Lam;Qingle Wu;Benjamin K. Ng;Sio-Kei Im
{"title":"TRHyper: Low-Complexity Hypernetwork for Channel Neural Decoding With Learning Weights in Tensor Ring Format","authors":"Yuanhui Liang;Chan-Tong Lam;Qingle Wu;Benjamin K. Ng;Sio-Kei Im","doi":"10.1109/LCOMM.2025.3546260","DOIUrl":null,"url":null,"abstract":"In this letter, we propose a low-complexity hypernetwork for channel neural decoding with learning weights in tensor ring (TR) format, called TRHyper. The internal parameters and the number of layers of the TRHyper based channel neural decoding algorithm can be updated without retraining. We design the size of each TRHyper layer according to the size of the factor tensor in tensor ring format. During the training phase, we reuse the storage space for the learning weights of the main decoding network, so the proposed TRHyper no longer require additional storage space for its learning weights. Numerical results show that for low-density parity check (LDPC) codes, the performance of the TRHyper based channel neural decoder is similar to that of the original decoder, while for Bose-Chaudhuri-Hocquenghem (BCH) codes, the performance slightly exceeds the original decoder.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 5","pages":"918-922"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908838/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we propose a low-complexity hypernetwork for channel neural decoding with learning weights in tensor ring (TR) format, called TRHyper. The internal parameters and the number of layers of the TRHyper based channel neural decoding algorithm can be updated without retraining. We design the size of each TRHyper layer according to the size of the factor tensor in tensor ring format. During the training phase, we reuse the storage space for the learning weights of the main decoding network, so the proposed TRHyper no longer require additional storage space for its learning weights. Numerical results show that for low-density parity check (LDPC) codes, the performance of the TRHyper based channel neural decoder is similar to that of the original decoder, while for Bose-Chaudhuri-Hocquenghem (BCH) codes, the performance slightly exceeds the original decoder.
TRHyper:基于张量环格式的学习权信道神经解码的低复杂度超网络
在这封信中,我们提出了一种低复杂度的超网络,用于张量环(TR)格式的信道神经解码,称为TRHyper。基于TRHyper的信道神经解码算法的内部参数和层数可以在不重新训练的情况下更新。我们根据张量环格式的因子张量的大小来设计每个TRHyper层的大小。在训练阶段,我们重用了主解码网络的学习权值的存储空间,因此所提出的TRHyper不再需要额外的学习权值存储空间。数值结果表明,对于低密度奇偶校验码(LDPC),基于TRHyper的信道神经解码器的性能与原始解码器相似,而对于Bose-Chaudhuri-Hocquenghem (BCH)码,其性能略高于原始解码器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信