NeRFCom: Feature Transform Coding Meets Neural Radiance Field for Free-View 3-D Scene Semantic Transmission

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Weijie Yue;Zhongwei Si;Bolin Wu;Sixian Wang;Xiaoqi Qin;Kai Niu;Jincheng Dai;Ping Zhang
{"title":"NeRFCom: Feature Transform Coding Meets Neural Radiance Field for Free-View 3-D Scene Semantic Transmission","authors":"Weijie Yue;Zhongwei Si;Bolin Wu;Sixian Wang;Xiaoqi Qin;Kai Niu;Jincheng Dai;Ping Zhang","doi":"10.1109/LCOMM.2025.3544882","DOIUrl":null,"url":null,"abstract":"We introduce NeRFCom, a novel communication system designed for end-to-end 3D scene transmission. Compared to traditional systems relying on handcrafted NeRF semantic feature decomposition for compression and well-adaptive channel coding for transmission error correction, our NeRFCom employs a nonlinear transform and learned probabilistic models, enabling flexible variable-rate joint source-channel coding and efficient bandwidth allocation aligned with the NeRF semantic feature’s different contribution to the 3D scene synthesis fidelity. Experimental results demonstrate that NeRFCom achieves free-view 3D scene efficient transmission while maintaining robustness under adverse channel conditions.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 5","pages":"898-902"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10900420/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce NeRFCom, a novel communication system designed for end-to-end 3D scene transmission. Compared to traditional systems relying on handcrafted NeRF semantic feature decomposition for compression and well-adaptive channel coding for transmission error correction, our NeRFCom employs a nonlinear transform and learned probabilistic models, enabling flexible variable-rate joint source-channel coding and efficient bandwidth allocation aligned with the NeRF semantic feature’s different contribution to the 3D scene synthesis fidelity. Experimental results demonstrate that NeRFCom achieves free-view 3D scene efficient transmission while maintaining robustness under adverse channel conditions.
基于特征变换编码的神经辐射场自由视场三维场景语义传输
我们介绍了NeRFCom,一个为端到端3D场景传输而设计的新型通信系统。与传统系统依赖手工制作的NeRF语义特征分解进行压缩和自适应信道编码进行传输纠错相比,我们的NeRFCom采用非线性变换和学习概率模型,实现了灵活的可变速率联合源信道编码和有效的带宽分配,与NeRF语义特征对3D场景合成保真度的不同贡献相一致。实验结果表明,在恶劣信道条件下,NeRFCom在保持鲁棒性的同时,实现了自由视场3D场景的高效传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信