On-Chip $\mathbf{G}{{\mathbf{e}}_{1 - {\bm{x}}}}\mathbf{S}{{\mathbf{n}}_{\bm{x}}}$ Slot Optical Waveguides-Based Highly Sensitive Mid-Infrared Biochemical Sensors for Room Temperature Applications

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Harshvardhan Kumar;Jagrati Yadav;Neha Soni
{"title":"On-Chip $\\mathbf{G}{{\\mathbf{e}}_{1 - {\\bm{x}}}}\\mathbf{S}{{\\mathbf{n}}_{\\bm{x}}}$ Slot Optical Waveguides-Based Highly Sensitive Mid-Infrared Biochemical Sensors for Room Temperature Applications","authors":"Harshvardhan Kumar;Jagrati Yadav;Neha Soni","doi":"10.1109/LSENS.2025.3563778","DOIUrl":null,"url":null,"abstract":"In this work, we present the first proof of complementary metal-oxide-semiconductor-compatible GeSn slot optical waveguides (WGs)-based highly sensitive biochemical sensors for mid-infrared (MIR) applications. Moreover, proposed WGs are designed to achieve high sensitivity values in the MIR region, specifically at 3.67 μm for lipids detection. The simulation indicates that GeSn core height and width affect the confinement factor significantly in both the sensing and slot regions. In an optimized WG geometry (H = W = 300 nm), the proposed cross-slot waveguide (CS-WG) demonstrates the highest confinement factors of 43% and 50% in the slot and sensing regions, respectively, notably higher than the values obtained for the designed vertical-slot-WG and horizontal-slot-WG. Subsequently, the WG sensitivity is determined by taking into account the impact of changes in the thickness of the sensing layer. The results indicate that a biochemical sensor utilizing a cross-slot WG demonstrates the highest sensitivity compared to biochemical sensors based on either horizontal-slot or vertical-slot WGs. Furthermore, the CS-WG MIR sensor we propose demonstrates the sensitivity value of <inline-formula><tex-math>$2.8 \\times {{10}^{ - 3}}\\ \\mathrm{n}{{\\mathrm{m}}^{ - 1}}$</tex-math></inline-formula>, which is one order of magnitude higher than the sensitivity value of <inline-formula><tex-math>$4 \\times {{10}^{ - 4}}\\ \\mathrm{n}{{\\mathrm{m}}^{ - 1}}$</tex-math></inline-formula> achieved by the earlier reported Si slot SWIR WG sensor. This comparison highlights the efficacy of our proposed biochemical sensors for MIR sensing applications.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 5","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10974647/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present the first proof of complementary metal-oxide-semiconductor-compatible GeSn slot optical waveguides (WGs)-based highly sensitive biochemical sensors for mid-infrared (MIR) applications. Moreover, proposed WGs are designed to achieve high sensitivity values in the MIR region, specifically at 3.67 μm for lipids detection. The simulation indicates that GeSn core height and width affect the confinement factor significantly in both the sensing and slot regions. In an optimized WG geometry (H = W = 300 nm), the proposed cross-slot waveguide (CS-WG) demonstrates the highest confinement factors of 43% and 50% in the slot and sensing regions, respectively, notably higher than the values obtained for the designed vertical-slot-WG and horizontal-slot-WG. Subsequently, the WG sensitivity is determined by taking into account the impact of changes in the thickness of the sensing layer. The results indicate that a biochemical sensor utilizing a cross-slot WG demonstrates the highest sensitivity compared to biochemical sensors based on either horizontal-slot or vertical-slot WGs. Furthermore, the CS-WG MIR sensor we propose demonstrates the sensitivity value of $2.8 \times {{10}^{ - 3}}\ \mathrm{n}{{\mathrm{m}}^{ - 1}}$, which is one order of magnitude higher than the sensitivity value of $4 \times {{10}^{ - 4}}\ \mathrm{n}{{\mathrm{m}}^{ - 1}}$ achieved by the earlier reported Si slot SWIR WG sensor. This comparison highlights the efficacy of our proposed biochemical sensors for MIR sensing applications.
片上$\mathbf{G}{{\mathbf{e}}_{1 - {\bm{x}}}}\mathbf{S}{{\mathbf{n}}_{\bm{x}}}$基于槽位光波导的高灵敏度室温中红外生化传感器
在这项工作中,我们提出了基于中红外(MIR)应用的互补金属氧化物半导体兼容GeSn槽光波导(WGs)的高灵敏度生化传感器的第一个证明。此外,所设计的WGs在MIR区域具有高灵敏度值,特别是在3.67 μm处用于脂质检测。仿真结果表明,GeSn核的高度和宽度对传感区和槽区约束因子均有显著影响。在优化的波导几何形状(H = W = 300 nm)下,所提出的交叉槽波导(CS-WG)在槽区和传感区分别具有43%和50%的最高约束因子,显著高于设计的垂直槽波导和水平槽波导。随后,通过考虑传感层厚度变化的影响来确定WG灵敏度。结果表明,与基于水平槽或垂直槽WG的生化传感器相比,使用交叉槽WG的生化传感器具有最高的灵敏度。此外,我们提出的CS-WG MIR传感器的灵敏度值为$2.8 \倍{{10}^{- 3}}\ \mathrm{n}{{\mathrm{m}}^{- 1}}$,比先前报道的Si槽SWIR WG传感器的灵敏度值$4 \倍{{10}^{- 4}}\ \mathrm{n}{{\mathrm{m}}^{- 1}}$高一个数量级。这一比较突出了我们提出的生物化学传感器在MIR传感应用中的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信