High-efficiency MPPT Using ZVS quasi-resonant converter and PSO algorithm: Simulation and PIL validation

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Souhail Barakat , Abdelouahed Mesbahi , Badr N’hili , Ayoub Nouaiti , Mohcine Abouyaakoub
{"title":"High-efficiency MPPT Using ZVS quasi-resonant converter and PSO algorithm: Simulation and PIL validation","authors":"Souhail Barakat ,&nbsp;Abdelouahed Mesbahi ,&nbsp;Badr N’hili ,&nbsp;Ayoub Nouaiti ,&nbsp;Mohcine Abouyaakoub","doi":"10.1016/j.sciaf.2025.e02704","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the use of quasi-resonant converters for maximizing power extraction in residential photovoltaic (PV) applications, ensuring high efficiency and optimal energy quality. Quasi-resonant boost converters are implemented to optimize the power transfer process while minimizing switching losses and improving the overall performance of the system. The Particle Swarm Optimization (PSO) technique, which offers a reliable and flexible control mechanism for changing environmental conditions, is used to achieve Maximum Power Point Tracking (MPPT). The proposed system is modeled and simulated in MATLAB Simulink to validate its performance under different operating scenarios. Furthermore, real-time validation is conducted using the Processor-in-the-Loop (PIL) approach, implemented via the LAUNCHXL-F28379D microcontroller. The simulation and PIL results demonstrate the system’s capability to efficiently extract maximum power with high accuracy and energy quality, making it suitable for residential PV installations.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"28 ","pages":"Article e02704"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625001747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the use of quasi-resonant converters for maximizing power extraction in residential photovoltaic (PV) applications, ensuring high efficiency and optimal energy quality. Quasi-resonant boost converters are implemented to optimize the power transfer process while minimizing switching losses and improving the overall performance of the system. The Particle Swarm Optimization (PSO) technique, which offers a reliable and flexible control mechanism for changing environmental conditions, is used to achieve Maximum Power Point Tracking (MPPT). The proposed system is modeled and simulated in MATLAB Simulink to validate its performance under different operating scenarios. Furthermore, real-time validation is conducted using the Processor-in-the-Loop (PIL) approach, implemented via the LAUNCHXL-F28379D microcontroller. The simulation and PIL results demonstrate the system’s capability to efficiently extract maximum power with high accuracy and energy quality, making it suitable for residential PV installations.
基于ZVS准谐振变换器和PSO算法的高效MPPT:仿真与PIL验证
本文介绍了在住宅光伏(PV)应用中使用准谐振转换器来最大限度地提取电力,确保高效率和最佳的能源质量。实现准谐振升压变换器以优化功率传输过程,同时最小化开关损耗并提高系统的整体性能。采用粒子群优化(PSO)技术实现最大功率点跟踪(MPPT),为环境条件的变化提供了可靠、灵活的控制机制。在MATLAB Simulink中对系统进行了建模和仿真,验证了系统在不同操作场景下的性能。此外,通过LAUNCHXL-F28379D微控制器实现的处理器在环(PIL)方法进行实时验证。仿真和PIL结果表明,该系统能够高效提取最大功率,具有高精度和高质量的能量,适合于住宅光伏安装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信