Christopher R. Fisher , Joseph W. Houpt , Othalia Larue , Kevin Schmidt
{"title":"Using systems factorial technology for global model analysis of ACT-R’s core architectural assumptions","authors":"Christopher R. Fisher , Joseph W. Houpt , Othalia Larue , Kevin Schmidt","doi":"10.1016/j.jmp.2025.102924","DOIUrl":null,"url":null,"abstract":"<div><div>Cognitive architectures (CAs) are unified theories of cognition which describe invariant properties in the structure and function of cognition, including how sub-systems (e.g., memory, vision) interact as a coherent system. One problem stemming from the size and flexibility of CAs is deriving critical tests of their core architectural assumptions. To address this issue, we combine systems factorial technology (SFT) and global model analysis (GMA) into a unified framework called SFT-GMA. In the framework, the prediction space is defined in terms of qualitative classes of SFT models, and GMA identifies constraints on this space based on core architectural assumptions. Critical tests are then derived and tested with SFT. Our application of SFT-GMA to ACT-R revealed two key insights: (1) we identified critical tests despite many degrees of freedom in model specification, and (2) ACT-R requires serial processing of perceptual stimuli under most conditions. These processing constraints on perception are at odds with data reported in several published experiments.</div></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"125 ","pages":"Article 102924"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249625000252","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Cognitive architectures (CAs) are unified theories of cognition which describe invariant properties in the structure and function of cognition, including how sub-systems (e.g., memory, vision) interact as a coherent system. One problem stemming from the size and flexibility of CAs is deriving critical tests of their core architectural assumptions. To address this issue, we combine systems factorial technology (SFT) and global model analysis (GMA) into a unified framework called SFT-GMA. In the framework, the prediction space is defined in terms of qualitative classes of SFT models, and GMA identifies constraints on this space based on core architectural assumptions. Critical tests are then derived and tested with SFT. Our application of SFT-GMA to ACT-R revealed two key insights: (1) we identified critical tests despite many degrees of freedom in model specification, and (2) ACT-R requires serial processing of perceptual stimuli under most conditions. These processing constraints on perception are at odds with data reported in several published experiments.
期刊介绍:
The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome.
Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation.
The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology.
Research Areas include:
• Models for sensation and perception, learning, memory and thinking
• Fundamental measurement and scaling
• Decision making
• Neural modeling and networks
• Psychophysics and signal detection
• Neuropsychological theories
• Psycholinguistics
• Motivational dynamics
• Animal behavior
• Psychometric theory