New endpoint estimates for commutators of multilinear operators

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Yichun Zhao , Songbai Wang , Jiang Zhou
{"title":"New endpoint estimates for commutators of multilinear operators","authors":"Yichun Zhao ,&nbsp;Songbai Wang ,&nbsp;Jiang Zhou","doi":"10.1016/j.bulsci.2025.103644","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>b</mi><mo>∈</mo><mrow><mi>BMO</mi></mrow></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> be a class of multilinear operators as <span><span>Definition 1.3</span></span>. We establish a new weighted endpoint estimate of the commutators <span><math><mo>[</mo><mover><mrow><mi>b</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>]</mo></math></span> via extending the weighted <em>L</em>log<em>L</em> type Orlicz space to the larger Ω type Orlicz space. As applications, we first obtain the new weighted endpoint estimates for multilinear commutators and iterated commutators associated with multilinear Calderón–Zygmund operators and multilinear fractional integral operators, which improve <span><span>[26, Theorem 1.1]</span></span> in some sense. In addition, the new weighted endpoint estimates of commutators associated with multilinear Littlewood-Paley type operators and multilinear singular integrals with non-smooth kernels are shown by enhancing the conditions of operator and their commutator. In particular, the new weighted endpoint estimates are also new results in the one-linear and unweighted cases. Furthermore, we get the endpoint estimate of commutators <span><math><mo>[</mo><mi>b</mi><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></math></span> on generalized Orlicz spaces by an extrapolation theorem.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103644"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000703","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let bBMO and Tα be a class of multilinear operators as Definition 1.3. We establish a new weighted endpoint estimate of the commutators [b,Tα] via extending the weighted LlogL type Orlicz space to the larger Ω type Orlicz space. As applications, we first obtain the new weighted endpoint estimates for multilinear commutators and iterated commutators associated with multilinear Calderón–Zygmund operators and multilinear fractional integral operators, which improve [26, Theorem 1.1] in some sense. In addition, the new weighted endpoint estimates of commutators associated with multilinear Littlewood-Paley type operators and multilinear singular integrals with non-smooth kernels are shown by enhancing the conditions of operator and their commutator. In particular, the new weighted endpoint estimates are also new results in the one-linear and unweighted cases. Furthermore, we get the endpoint estimate of commutators [b,T0] on generalized Orlicz spaces by an extrapolation theorem.
多线性算子换向子的新端点估计
设b∈BMO, Tα是定义1.3的一类多线性算子。通过将加权LlogL型Orlicz空间扩展到更大的Ω型Orlicz空间,建立了换向子[b→,Tα]的一个新的加权端点估计。作为应用,我们首先得到了与多元线性Calderón-Zygmund算子和多元线性分数积分算子相关的多元线性对易子和迭代对易子的新的加权端点估计,在一定程度上改进了[26,定理1.1]。此外,通过增强算子及其对易子的条件,给出了与多线性Littlewood-Paley型算子和非光滑核多线性奇异积分相关的换易子的新的加权端点估计。特别是,新的加权端点估计也是单线性和未加权情况下的新结果。此外,我们利用外推定理得到了广义Orlicz空间上对易子[b,T0]的端点估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信