On dispersion of solute in a hydromagnetic flow through a channel subject to asymmetric wall temperature and slip velocity

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Susmita Das , Bijoy Singha Mazumder , Kajal Kumar Mondal
{"title":"On dispersion of solute in a hydromagnetic flow through a channel subject to asymmetric wall temperature and slip velocity","authors":"Susmita Das ,&nbsp;Bijoy Singha Mazumder ,&nbsp;Kajal Kumar Mondal","doi":"10.1016/j.ijthermalsci.2025.109951","DOIUrl":null,"url":null,"abstract":"<div><div>With the influence of asymmetric wall temperature and inclined magnetic field under a constant pressure gradient, the present study explores the transport process of solute in a magneto-hydrodynamics (MHD), viscous, incompressible, electrically conducting fluid through a porous channel. The coupled heat and velocity equations are solved to obtain the explicit expressions for the temperature and velocity profiles. The slip velocity has been taken at the lower wall of the channel and the first order boundary absorption is applied at both the channel walls. Aris’s moment method is employed to obtain the first four central moments and the governing time-dependent advection-diffusion equation is solved, using an implicit finite-difference technique. The axial distribution of mean concentration of the solute is determined by the Hermite polynomial representation. For the first time, the various dispersion characteristics are observed for various parameters, such as the absorption parameter (<span><math><mi>β</mi></math></span>), angle of inclined magnetic field (<span><math><mi>α</mi></math></span>), Prandtl number (<span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span>), Hartmann number (<span><math><mi>M</mi></math></span>), suction Reynolds number (<span><math><mi>R</mi></math></span>), injection Reynolds number (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>), Darcy number (<span><math><mrow><mi>D</mi><mi>n</mi></mrow></math></span>), Grashof number (<span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span>), Navier slip parameter (<span><math><mi>γ</mi></math></span>), thermal radiation parameter (<span><math><mi>δ</mi></math></span>) and dispersion time (<span><math><mi>t</mi></math></span>), simultaneously. It is prominent that when <span><math><mi>γ</mi></math></span> increases from 0.1 to 0.2, the dispersion of solute increases 28.68% and when it increases from 0.2 to 0.3, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> increases by 22.75%. Conversely, when <span><math><mi>δ</mi></math></span> increases from 1 to 2, the dispersion of solute enhances more rapidly by 154.95% and when <span><math><mi>δ</mi></math></span> rises from 2 to 3, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> increases 39.33%. It is significant to note that, the amplitude of the mean concentration <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> reduces as <span><math><mi>γ</mi></math></span>, <span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span> and <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> enhances. On the other hand, the amplitude of the mean concentration rises as <span><math><mi>α</mi></math></span> and <span><math><mi>M</mi></math></span> reduces. Both experimental and numerical validations are performed for the present work with the existing literature and an excellent agreement is achieved. For experimental validation, a combination of an artanh transformation and a piece-wise uniform mesh is utilized. Also, the two dimensional distribution of mean concentration is obtained analytically for various values of <span><math><mi>γ</mi></math></span>, <span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span>, <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> and <span><math><mi>δ</mi></math></span>. The obtained results from the current study are helpful for purification of crude oil, to understand the various hemodynamic conditions and for separation of matter from fluids etc.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"215 ","pages":"Article 109951"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925002741","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the influence of asymmetric wall temperature and inclined magnetic field under a constant pressure gradient, the present study explores the transport process of solute in a magneto-hydrodynamics (MHD), viscous, incompressible, electrically conducting fluid through a porous channel. The coupled heat and velocity equations are solved to obtain the explicit expressions for the temperature and velocity profiles. The slip velocity has been taken at the lower wall of the channel and the first order boundary absorption is applied at both the channel walls. Aris’s moment method is employed to obtain the first four central moments and the governing time-dependent advection-diffusion equation is solved, using an implicit finite-difference technique. The axial distribution of mean concentration of the solute is determined by the Hermite polynomial representation. For the first time, the various dispersion characteristics are observed for various parameters, such as the absorption parameter (β), angle of inclined magnetic field (α), Prandtl number (Pr), Hartmann number (M), suction Reynolds number (R), injection Reynolds number (R), Darcy number (Dn), Grashof number (Gr), Navier slip parameter (γ), thermal radiation parameter (δ) and dispersion time (t), simultaneously. It is prominent that when γ increases from 0.1 to 0.2, the dispersion of solute increases 28.68% and when it increases from 0.2 to 0.3, Da increases by 22.75%. Conversely, when δ increases from 1 to 2, the dispersion of solute enhances more rapidly by 154.95% and when δ rises from 2 to 3, Da increases 39.33%. It is significant to note that, the amplitude of the mean concentration Cm(x,t) reduces as γ, Gr and Pr enhances. On the other hand, the amplitude of the mean concentration rises as α and M reduces. Both experimental and numerical validations are performed for the present work with the existing literature and an excellent agreement is achieved. For experimental validation, a combination of an artanh transformation and a piece-wise uniform mesh is utilized. Also, the two dimensional distribution of mean concentration is obtained analytically for various values of γ, Gr, Pr and δ. The obtained results from the current study are helpful for purification of crude oil, to understand the various hemodynamic conditions and for separation of matter from fluids etc.
受不对称壁面温度和滑移速度影响的磁流中溶质的分散
在恒压梯度下,在不对称壁面温度和倾斜磁场的影响下,研究了溶质在磁流体力学(MHD)、粘性、不可压缩、导电流体中通过多孔通道的输运过程。求解了热和速度耦合方程,得到了温度和速度分布的显式表达式。在通道的下壁处取了滑移速度,在通道的两壁处应用了一级边界吸收。采用Aris矩法求出前4个中心矩,并采用隐式有限差分技术求解随时间变化的对流扩散控制方程。溶质平均浓度的轴向分布由埃尔米特多项式表示确定。首次观察了吸收参数(β)、倾斜磁场角(α)、普朗特数(Pr)、哈特曼数(M)、吸力雷诺数(R)、注入雷诺数(R′)、达西数(Dn)、格拉希夫数(Gr)、纳维尔滑移参数(γ)、热辐射参数(δ)和色散时间(t)等参数的不同色散特性。当γ从0.1增加到0.2时,溶质弥散度增加28.68%,当γ从0.2增加到0.3时,Da增加22.75%。相反,当δ从1增加到2时,溶质弥散性提高了154.95%,δ从2增加到3时,Da增加了39.33%。值得注意的是,随着γ、Gr和Pr的增加,平均浓度Cm(x,t)的振幅减小。另一方面,平均浓度的振幅随着α和M的减小而增大。本文的工作与已有文献进行了实验和数值验证,并取得了很好的一致性。为了实验验证,采用了artanh变换和分段均匀网格相结合的方法。同时,对不同γ、Gr、Pr和δ值的平均浓度的二维分布进行了分析。所得结果对原油的提纯、各种流体动力学条件的认识、物液分离等方面具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信