Bootsakorn Boonkaew , Nantawat Satthawiwat , Bianca C. Pachane , Lucy M. Brett , Pisit Tangkijvanich , Chaiyaboot Ariyachet
{"title":"Palmitic acid reduces LDLR-dependent uptake of macrophage-derived extracellular vesicles by hepatoma cells","authors":"Bootsakorn Boonkaew , Nantawat Satthawiwat , Bianca C. Pachane , Lucy M. Brett , Pisit Tangkijvanich , Chaiyaboot Ariyachet","doi":"10.1016/j.ncrna.2025.04.007","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by a complicated interaction of lipotoxicity and inflammation in the liver, yet the mechanisms linking these phenomena remain incompletely understood. In this study, we investigated the mechanistic uptake of extracellular vesicles (EVs) derived from macrophages into palmitic acid (PA)-induced lipotoxic hepatoma cells. By co-culturing macrophages with lipotoxic Huh7 cells in a transwell system, we demonstrated that PA-treated Huh7 cells exhibited impaired uptake of macrophage-derived EVs. Compared with control Huh7 cells, PA-treated Huh7 cells presented a reduction in the expression of macrophage-derived microRNA-223 (miR-223) after co-culture, accompanied by an increase in the expression of miR-223 target genes. Further analysis revealed that upon PA treatment, the expression of low-density lipoprotein receptor (LDLR) in Huh7 cells and EV uptake activity were simultaneously diminished. Gain- and loss-of-function experiments of LDLR in Huh7 cells revealed a crucial role of LDLR in facilitating EV uptake. Mechanistically, we elucidated that PA induced endoplasmic reticulum stress and subsequently stimulated proprotein convertase subtilisin/kexin type 9 (PCSK9)-mediated LDLR degradation. Administration of a PCSK9 inhibitor rescued LDLR levels and increased EV uptake in PA-treated Huh7 cells from macrophages. Moreover, we found that the uptake of macrophage-derived EVs lacking apolipoprotein E (ApoE) by Huh7 cells was lower than that of control EVs, highlighting the role of ApoE as a facilitator of EV transfer from macrophages into Huh7 cells. Overall, our study highlights the intricate mechanisms underlying EV-mediated communication between macrophages and Huh7 cells during lipotoxicity and provides insight into the development of EV-based therapies for MASLD.</div></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"13 ","pages":"Pages 71-83"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468054025000460","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by a complicated interaction of lipotoxicity and inflammation in the liver, yet the mechanisms linking these phenomena remain incompletely understood. In this study, we investigated the mechanistic uptake of extracellular vesicles (EVs) derived from macrophages into palmitic acid (PA)-induced lipotoxic hepatoma cells. By co-culturing macrophages with lipotoxic Huh7 cells in a transwell system, we demonstrated that PA-treated Huh7 cells exhibited impaired uptake of macrophage-derived EVs. Compared with control Huh7 cells, PA-treated Huh7 cells presented a reduction in the expression of macrophage-derived microRNA-223 (miR-223) after co-culture, accompanied by an increase in the expression of miR-223 target genes. Further analysis revealed that upon PA treatment, the expression of low-density lipoprotein receptor (LDLR) in Huh7 cells and EV uptake activity were simultaneously diminished. Gain- and loss-of-function experiments of LDLR in Huh7 cells revealed a crucial role of LDLR in facilitating EV uptake. Mechanistically, we elucidated that PA induced endoplasmic reticulum stress and subsequently stimulated proprotein convertase subtilisin/kexin type 9 (PCSK9)-mediated LDLR degradation. Administration of a PCSK9 inhibitor rescued LDLR levels and increased EV uptake in PA-treated Huh7 cells from macrophages. Moreover, we found that the uptake of macrophage-derived EVs lacking apolipoprotein E (ApoE) by Huh7 cells was lower than that of control EVs, highlighting the role of ApoE as a facilitator of EV transfer from macrophages into Huh7 cells. Overall, our study highlights the intricate mechanisms underlying EV-mediated communication between macrophages and Huh7 cells during lipotoxicity and provides insight into the development of EV-based therapies for MASLD.
期刊介绍:
Non-coding RNA Research aims to publish high quality research and review articles on the mechanistic role of non-coding RNAs in all human diseases. This interdisciplinary journal will welcome research dealing with all aspects of non-coding RNAs-their biogenesis, regulation and role in disease progression. The focus of this journal will be to publish translational studies as well as well-designed basic studies with translational and clinical implications. The non-coding RNAs of particular interest will be microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), U-RNAs/small nuclear RNAs (snRNAs), exosomal/extracellular RNAs (exRNAs), Piwi-interacting RNAs (piRNAs) and long non-coding RNAs. Topics of interest will include, but not limited to: -Regulation of non-coding RNAs -Targets and regulatory functions of non-coding RNAs -Epigenetics and non-coding RNAs -Biological functions of non-coding RNAs -Non-coding RNAs as biomarkers -Non-coding RNA-based therapeutics -Prognostic value of non-coding RNAs -Pharmacological studies involving non-coding RNAs -Population based and epidemiological studies -Gene expression / proteomics / computational / pathway analysis-based studies on non-coding RNAs with functional validation -Novel strategies to manipulate non-coding RNAs expression and function -Clinical studies on evaluation of non-coding RNAs The journal will strive to disseminate cutting edge research, showcasing the ever-evolving importance of non-coding RNAs in modern day research and medicine.